介质尺寸对水中γ射线吸收剂量累积因子的影响

李华, 赵原, 刘立业, 肖运实, 李君利

清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (5) : 525-529.

PDF(1670 KB)
PDF(1670 KB)
清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (5) : 525-529. DOI: 10.16511/j.cnki.qhdxxb.2017.22.032
工程物理

介质尺寸对水中γ射线吸收剂量累积因子的影响

  • 李华1,2, 赵原2, 刘立业2, 肖运实2, 李君利1
作者信息 +

Effect of medium size on the γ-ray buildup factor for energy absorption in water

  • LI Hua1,2, ZHAO Yuan2, LIU Liye2, XIAO Yunshi2, LI Junli1
Author information +
文章历史 +

摘要

目前所使用的累积因子是在无限大介质模型下计算得到的,与现实模型差异较大。为了提高累积因子在实际计算中的精度,基于Monte Carlo方法和圆柱模型对水中的γ射线吸收剂量累积因子随介质尺寸的变化进行了研究。结果显示:水中的累积因子值会随着圆柱半径的变大而先增大,后趋于稳定。其在趋于稳定值时对应的圆柱半径数值与能量和介质厚度无关,仅与点源和测量点到介质表面的距离有关。在累积因子达到稳定值之前,其大小随圆柱半径的变化较大,在一定自由程数范围内符合线性变化规律,并且随着介质厚度的增大,符合线性规律对应的自由程数范围也会增大。该研究可为使用点核积分方法进行屏蔽设计时分析计算误差提供参考。

Abstract

γ-Ray buildup factors calculated using an infinite medium model can differ greatly for actual finite models. The precision of the buildup factors used in the actual calculations is improved using Monte Carlo simulations to study the variation of the energy absorption buildup factors as a function of the medium size for water using a cylindrical model. The results show that as the cylinder radius increases, the buildup factors in water first increase up to a maximum. The corresponding radius values for the maximum buildup factors are not influenced by the γ-ray energy or the medium thickness, but are only related to the distance from the point source to the measured point on the medium surface. The differences between the buildup factors as the cylinder radius increases are larger than for the maximums, and the variation is linear for some mean free paths. As the medium thickness increases, the corresponding range of the mean free paths where the variation is linear also increases. This work provides a reference for analyzing calculational errors in shielding designs.

关键词

辐射防护 / 累积因子 / 介质尺寸 / 影响因素

Key words

radiation protection / buildup factor / medium size / influence factors

引用本文

导出引用
李华, 赵原, 刘立业, 肖运实, 李君利. 介质尺寸对水中γ射线吸收剂量累积因子的影响[J]. 清华大学学报(自然科学版). 2017, 57(5): 525-529 https://doi.org/10.16511/j.cnki.qhdxxb.2017.22.032
LI Hua, ZHAO Yuan, LIU Liye, XIAO Yunshi, LI Junli. Effect of medium size on the γ-ray buildup factor for energy absorption in water[J]. Journal of Tsinghua University(Science and Technology). 2017, 57(5): 525-529 https://doi.org/10.16511/j.cnki.qhdxxb.2017.22.032
中图分类号: TL72   

参考文献

[1] 李星洪. 辐射防护基础[M]. 北京: 原子能出版社, 1982.LI Xinghong. Radiation Protection Foundation [M]. Beijing: Atomic Energy Press, 1982. (in Chinese) [2] 中国科学院工程力学研究所. γ射线屏蔽参考手册[M]. 北京: 原子能出版社, 1976.Institute of Mechanics, Chinese Academy of Sciences. Gamma-Ray Shielding Reference Manual [M]. Beijing: Atomic Energy Press, 1976. (in Chinese) [3] 刘立坡, 刘义保, 王娟. 积累因子影响因素的蒙特卡罗模拟[J]. 辐射防护, 2008, 28(2): 108-111.LIU Lipo, LIU Yibao, WANG Juan. Monte Carlo simulation of corrected value of buildup factor [J]. Radiation Protection, 2008, 28(2): 108-111. (in Chinese) [4] 张雷, 赵兵, 王学新. 蒙特卡罗程序EGS4在γ照射量积累因子计算中的应用[J]. 辐射防护, 2011, 31(2): 88-93.ZHANG Lei, ZHAO Bing, WANG Xuexin. Application of Monte Carlo code EGS4 to calculate gamma exposure buildup factors [J]. Radiation Protection, 2011, 31(2): 88-93.(in Chinese) [5] ANSI/ANS-6.4.3-1991. American National Standard for Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials [S]. La Grange Park, IL: American Nuclear Society, 1991. [6] Singh V P, Badiger N M. Comprehensive study on energy absorption buildup factors and exposure buildup factors for photon energy 0.015 to 15 MeV up to 40 mfp penetration depth for gel dosimeters [J]. Radiation Physics and Chemistry, 2014, 103: 234-242. [7] Singh V P, Badiger N M. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry [J]. Radiation Physics and Chemistry, 2014, 104: 61-67. [8] Sharaf J M, Saleh H. Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures [J]. Radiation Physics and Chemistry, 2015, 110: 87-95. [9] Alkhatib S F, Park C J, Jeong H Y, et al. Layer-splitting technique for testing the recursive scheme for multilayer shields gamma ray buildup factors [J]. Annals of Nuclear Energy, 2016, 88: 24-29. [10] Briesmeister J F. MCNPTM: A General Monte Carlo N-Particle Transport Code [M]. Los Alamos, NM: Los Alamos National Laboratory, 2010. [11] 许淑艳. 蒙特卡罗方法在实验核物理中的应用 [M]. 北京: 原子能出版社, 2006.XU Shuyan. Application of Monte Carlo Method in Nuclear Physics Experiment [M]. Beijing: Atomic Energy Press, 2006. (in Chinese) [12] 裴鹿成, 张孝泽. 蒙特卡罗方法及其在粒子输运问题中的应用 [M]. 北京: 科学出版社, 1980.PEI Lucheng, ZHANG Xiaoze. Monte Carlo Method and Its Application in Particle Transport [M]. Beijing: Science Press, 1980. (in Chinese) [13] Luis D. Update to ANSI/ANS-6.4.3-1991 for Low-Z and Compound Materials and Review of Particle Transport Theory [D]. Las Vegas, NV: University of Nevada-Las Vegas, 2009.

PDF(1670 KB)

Accesses

Citation

Detail

段落导航
相关文章

/