3自由度并联机构的动力学各向同性评价方法

张彬彬, 王立平, 吴军

清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (8) : 803-809.

PDF(1748 KB)
PDF(1748 KB)
清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (8) : 803-809. DOI: 10.16511/j.cnki.qhdxxb.2017.22.041
机械工程

3自由度并联机构的动力学各向同性评价方法

  • 张彬彬, 王立平, 吴军
作者信息 +

Dynamic isotropic performance evaluation of a 3-DOF parallel manipulator

  • ZHANG Binbin, WANG Liping, WU Jun
Author information +
文章历史 +

摘要

该文以应用于高速、高加速混联加工装备中的一种3-PRRU空间3自由度并联机构为研究对象,研究其动力学建模及动力学各向同性评价方法。基于虚功原理,建立了3-PRRU并联机构的动力学模型,并从动能角度出发,提出了两个评价机构各向同性性能的指标。针对该指标,提出了一种5维图像描述方法,并对3-PRRU并联机构进行各向同性性能评价。该动力学各向同性评价指标具有量纲统一、物理意义明确的优点,可以更准确地对并联机构的动力学性能分布进行表征。

Abstract

Dynamic modeling was used to evaluate a 3-PRRU parallel manipulator in a high-speed hybrid machine tool. The virtual work principle was used to develop the dynamic model of the 3-PRRU parallel mechanism with two new indices defined to evaluate the isotropy of dynamics from a kinetic energy viewpoint. The indices were then used in an atlas method for a five dimensions image. The results show that these indices accurately describe the isotropic performance of the 3-PRRU parallel manipulator. The two indices have uniform dimensions, clear physical meaning, and can accurately describe the dynamics of parallel manipulators.

关键词

并联机构 / 动力学模型 / 性能评价 / 各向同性

Key words

parallel manipulator / dynamic model / performance evaluation / isotropic

引用本文

导出引用
张彬彬, 王立平, 吴军. 3自由度并联机构的动力学各向同性评价方法[J]. 清华大学学报(自然科学版). 2017, 57(8): 803-809 https://doi.org/10.16511/j.cnki.qhdxxb.2017.22.041
ZHANG Binbin, WANG Liping, WU Jun. Dynamic isotropic performance evaluation of a 3-DOF parallel manipulator[J]. Journal of Tsinghua University(Science and Technology). 2017, 57(8): 803-809 https://doi.org/10.16511/j.cnki.qhdxxb.2017.22.041
中图分类号: TP242.2   

参考文献

[1] 汪劲松, 黄田. 并联机床:机床行业面临的机遇与挑战[J]. 中国机械工程, 1999(10):31-35. WANG Jinsong, HUANG Tian. Parallel machine tool:The opportunities and challenges of machine tool industry[J]. China Mechanical Engineering, 1999(10):31-35. (in Chinese) [2] Wang L P, Zhang B B, Wu J. Optimum design of a 4-PSS-PU redundant parallel manipulator based on kinematics and dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(13):2273-2284. [3] Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3):220-226. [4] Gao F, Liu X J, Gruver W A. Performance evaluation of two-degree-of-freedom planar parallel robots[J]. Mechanism and Machine Theory, 1998, 33(6):661-668. [5] Huang T, Li Z X, Li M, et al. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations[J]. Journal of Mechanical Design, 2004, 126(3):449-455. [6] Hennes N. Ecospeed:An innovative machinery concept for high performance 5-axis machining of large structural components in aircraft engineering[C]//Proceedings of 3rd Chemnitz Parallel Kinematics Seminar. Zwickau, Germany, 2002:763-774. [7] Neumann K E. Tricept applications[C]//Proceeding of 3rd Chemnitz Parallel Kinematic Seminar. Zwickau, Germany, 2002:547-551. [8] Clavel R. A fast robot with parallel geometry[C]//Proc Int Symposium on Industrial Robots. Lausanne, Switzerland, 1988:91-100. [9] Asada H. A geometrical representation of manipulator dynamics and its application to arm design[J]. Journal of Dynamic Systems Measurement and Control, 1983, 105(3):131-142. [10] Wu J, Wang J S, Li T M, et al. Dynamic dexterity of a planar 2-DOF parallel manipulator in a hybrid machine tool[J]. Robotica, 2008, 26(1):93-98. [11] Wu J, Wang L P, You Z. A new method for optimum design of parallel manipulator based on kinematics and dynamics[J]. Nonlinear Dynamics, 2010, 61(4):717-727. [12] Bonev I A. Geometric Analysis of Parallel Mechanisms[D]. Québec, Canada:Université Laval, 2002:78-81.

PDF(1748 KB)

Accesses

Citation

Detail

段落导航
相关文章

/