天然石墨基材料研究进展

侯诗宇, 赵永涛, 黄正宏, 沈万慈, 康飞宇

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (12) : 2379-2409.

PDF(35324 KB)
PDF(35324 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (12) : 2379-2409. DOI: 10.16511/j.cnki.qhdxxb.2025.21.050
 

天然石墨基材料研究进展

作者信息 +

Research progress on natural graphite-based materials

Author information +
文章历史 +

摘要

天然石墨是中国具有全球竞争力的优势战略性矿产资源, 其精矿及深加工产品产量长期稳居全球首位。作为碳元素的结晶矿物, 天然石墨具备高导电性、高导热性、耐高低温、低摩擦系数及优异的热稳定性、化学稳定性、生物相容性等多重独特特性, 这些特性使其广泛用于冶金、机械、电子电气、化工、航空航天、核工业、新能源、环保和医疗等传统与战略性新兴产业, 成为支撑多领域发展的基础材料。针对天然石墨基材料的功能拓展与性能优化需求, 该文系统综述了其研究进展, 重点涵盖石墨层间化合物、天然石墨负极材料、膨胀石墨、柔性石墨, 粉体石墨烯及微晶石墨基各向同性石墨, 为天然石墨基材料的进一步研究与工业化应用提供全面参考。

Abstract

Significance: Natural graphite, a cornerstone of China's strategic mineral resources, enables the country to leverage its exceptional geological endowments and industrial prowess to maintain unparalleled global leadership. China's natural graphite industry dominates in both production output and high-value deep-processed products, such as spherical graphite and exfoliated graphite, positioning the country as a key strategic fulcrum in carbon materials competitiveness. Natural graphite, a thermodynamically stable crystalline allotrope of carbon, exhibits a hexagonal lattice structure in which sp2-hybridized carbon layers are stacked via weak van der Waals interactions. This intrinsic lamellar architecture underlies its unique material properties: high electrical and thermal conductivity, resistance to high and low temperatures, low friction coefficient, thermal stability, chemical inertness, and biocompatibility. Natural graphite is an irreplaceable foundational material that bridges traditional manufacturing with cutting-edge strategic emerging industries through its synergistic properties. In traditional industrial sectors, natural graphite demonstrates versatile applicability: in metallurgy, it functions as a carburetant and high-temperature refractory material; in mechanical engineering, its self-lubricating properties enable the fabrication of wear-resistant components such as precision bearings and seals; and in chemical processing, it can be modified through intercalation to create catalyst supports and advanced adsorption materials. Within strategic emerging industries, the strategic value of natural graphite is further elevated: high-purity spherical graphite acts as an irreplaceable precursor for lithium-ion battery anode materials, exfoliated graphite provides efficient oil-water separation, and flexible graphite is the material of choice for sealing systems operating under harsh environmental conditions. Progress: Recent advances in the exfoliation of graphite at room temperature have enabled the use of milder reaction conditions that better preserve its crystal structure. Unlike high-temperature processes, this method prevents local oxidation, resulting in exfoliated graphite worms with high flexibility. Room-temperature exfoliation can produce exfoliated graphite blocks with controllable shape, density, high mechanical strength, and excellent rebound. Electrochemically exfoliated graphene has few layers and a high yield, making it highly effective in enhancing the anti-corrosion performance of water-based coatings. Meanwhile, flexible graphite paper prepared by rolling has high electrical and thermal conductivity. Micro exfoliated graphite modified via room-temperature exfoliation can be combined with other metals to form lithium-ion battery anode materials with excellent rate performance and cycle stability. To address the growing demands for functional exfoliation and performance enhancement of natural graphite, this study systematically reviewed the latest research progress in six key categories: graphite intercalation compounds, natural graphite anode materials, exfoliated graphite, flexible graphite, graphene powder, and microcrystalline graphite-based isotropic graphite. The study systematically integrated research across the technological chain, including material synthesis, structural modulation, performance optimization, and industrial-scale application. Moreover, the intrinsic structure-activity relationships and critical technical bottlenecks in natural graphite-based materials were identified. Conclusions and Prospects: Natural graphite-based materials are poised to evolve toward higher performance, greener processes, and multifunctionality, serving as a key material for strategic emerging industries. This study provides a comprehensive reference for further research and industrial applications of natural graphite-based materials.

关键词

天然石墨 / 石墨层间化合物 / 膨胀石墨 / 柔性石墨 / 粉体石墨烯 / 各向同性石墨

Key words

natural graphite / graphite interlayer compounds / exfoliated graphite / flexible graphite / graphene powder / isotropic graphite

引用本文

导出引用
侯诗宇, 赵永涛, 黄正宏, . 天然石墨基材料研究进展[J]. 清华大学学报(自然科学版). 2025, 65(12): 2379-2409 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.050
Shiyu HOU, Yongtao ZHAO, Zhenghong HUANG, et al. Research progress on natural graphite-based materials[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(12): 2379-2409 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.050
中图分类号: TQ127.11   

参考文献

1
康飞宇. 天然石墨的改性与应用[M]. 北京: 清华大学出版社, 2022.
KANG F Y . Modification and application for natural graphite[M]. Beijing: Tsinghua University Press, 2022.
2
李龙土, 沈万慈. 中国材料工程大典[M]. 北京: 化学工业出版社, 2006.
LI L T , SHEN W C . China materials engineering canon[M]. Beijing: Chemical Industry Press, 2006.
3
刘超, 赵汀, 刘胜前, 等. 2025—2035年中国天然石墨资源需求预测[J]. 中国矿业, 2024, 33 (7): 78- 88.
LIU C , ZHAO T , LIU S Q . Demand prediction of natural graphite resources in China from 2025 to 2035[J]. China Mining Magazine, 2024, 33 (7): 78- 88.
4
汪立. 石墨层间化合物[J]. 新型炭材料, 1990 (2): 16- 19.
WANG L . Intercalation compounds of graphite[J]. New Carbon Materials, 1990 (2): 16- 19.
5
康飞宇. 石墨层间化合物和膨胀石墨[J]. 新型炭材料, 2000, 15 (4): 80.
KANG F Y . Graphite intercalation compound and exfoliated graphite[J]. New Carbon Materials, 2000, 15 (4): 80.
6
WU Y P , XUE Y , QIN S , et al. BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications[J]. ACS Applied Materials & Interfaces, 2017, 9 (49): 43163- 43170.
7
ZHU H L , LI Y Y , FANG Z Q , et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets[J]. ACS Nano, 2014, 8 (4): 3606- 3613.
8
XU Y F , KRAEMER D , SONG B , et al. Nanostructured polymer films with metal-like thermal conductivity[J]. Nature Communications, 2019, 10 (1): 1771.
9
TAN C X , DONG Z G , LI Y H , et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring[J]. Nature Communications, 2020, 11 (1): 3530.
10
JANG H , WOOD J D , RYDER C R , et al. Anisotropic thermal conductivity of exfoliated black phosphorus[J]. Advanced Materials, 2015, 27 (48): 8017- 8022.
11
WEJRZANOWSKI T , GRYBCZUK M , CHMIELEWSKI M , et al. Thermal conductivity of metal-graphene composites[J]. Materials & Design, 2016, 99, 163- 173.
12
李宽. 天然微晶石墨的浸润性及制备各向同性石墨的研究[D]. 北京: 清华大学, 2016.
LI K. Wettability of natural microcrystalline graphite and its application in isotropic graphite preparation[D]. Beijing: Tsinghua University, 2016. (in Chinese)
13
郭泽宇. 局域石墨化碳纳米纤维的制备及其对NO的催化氧化性能[D]. 北京: 清华大学, 2016.
GUO Z Y. Preparation of partial graphitic carbon nanofibers and their catalytic performance for NO oxidation[D]. Beijing: Tsinghua University, 2016. (in Chinese)
14
林雨潇. 石墨的微膨处理工艺及其用作锂离子电池负极材料的研究[D]. 北京: 清华大学, 2014.
LIN Y X. Mild expansion treatment of graphite and its application as anode material in lithium ion battery[D]. Beijing: Tsinghua University, 2014. (in Chinese)
15
楠顶. 锂离子电池自支撑一维多孔碳与硅碳复合负极材料研究[D]. 北京: 清华大学, 2014.
NAN D. One dimensional porous carbon and Si/C anode materials for lithium ion batteries[D]. Beijing: Tsinghua University, 2014. (in Chinese)
16
丁翔. 石墨烯制备及其在锂离子电池负极中的应用研究[D]. 北京: 清华大学, 2012.
DING X. Synthesis and electrochemical properties of graphene as anode materials for lithium-ion batteries[D]. Beijing: Tsinghua University, 2012. (in Chinese)
17
时迎迎. 天然炭材料做为锂离子电池负极材料的研究[D]. 北京: 清华大学, 2012.
SHI Y Y. Preparation and electrochemical properties of natural carbon materials as anode materials in lithium ion rechargeable battery[D]. Beijing: Tsinghua University, 2012. (in Chinese)
18
王宁. 用天然微晶石墨制备各向同性石墨的研究[D]. 北京: 清华大学, 2011.
WANG N. Study on preparation of isotropic graphite with nature amorphous graphite[D]. Beijing: Tsinghua University, 2011. (in Chinese)
19
高建平, 边祥成, 项春雷. 可膨胀石墨阻燃聚氨酯泡沫塑料的研究进展[J]. 广东化工, 2012, 39 (6): 295-296, 300.
GAO J P , BIAN X C , XIANG C L . Research progress of polyurethane foam filled with expandable graphite as flame retardant[J]. Guangdong Chemical Industry, 2012, 39 (6): 295-296, 300.
20
刘艳芳. 石墨的插层和剥离及其催化性能研究[D]. 武汉: 武汉大学, 2016.
LIU Y F. The intercalation and exfoliation of graphite and its catalytic properties[D]. Wuhan: Wuhan University, 2016. (in Chinese)
21
BOECK A , RÜDORFF W . Über die einlagerung von antimonfluoridchloriden in graphit versuche zur darstellung von metallfluorid-graphitverbindungen[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1971, 384 (2): 169- 176.
22
BACH B , UBBELOHDE A R . Chemical and electrical behaviour of graphite-metal halide compounds[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1971, 3669- 3674.
23
HÉROLD A. Crystallo-chemistry of carbon intercalation compounds[M]//LÉVY F. Intercalated Layered Materials. Dordrecht: Springer, 1979: 323-421.
24
DRESSELHAUS M S , DRESSELHAUS G . Intercalation compounds of graphite[J]. Advances in Physics, 1981, 30 (2): 139- 326.
25
STUMPP E , WERNER F . Graphite intercalation compounds with chlorides of manganese, nickel and zinc[J]. Carbon, 1966, 4 (4): 538.
26
SETTON R . The organic chemistry of some intercalation compounds of graphite[J]. TANSO, 1983, 1983 (115): 090201.
27
贾欣芮, 刘爱玲, 钟鑫, 等. 高压下多元硼碳基高温超导体的研究进展[J]. 高压物理学报, 2025, 39 (9): 090201.
JIA X R , LIU A L , ZHONG X , et al. Research progress in multi-boron-carbon-based high-temperature superconductors under high pressures[J]. Chinese Journal of High Pressure Physics, 2025, 39 (9): 18- 34.
28
FAUCHARD M , CAHEN S , BOLMONT M , et al. An efficient medium to intercalate metals into graphite: LiCl-KCl molten salts[J]. Carbon, 2019, 144, 171- 176.
29
KATINONKUL W , LERNER M M . Chemical synthesis of graphite bis(perfluoropinacolato)borate and graphite bis(hexafluorohydroxyisobutyrato)borate intercalation compounds[J]. Carbon, 2007, 45 (13): 2672- 2677.
30
韩志东. 新型石墨层间化合物的制备及其膨胀与阻燃机理的研究[D]. 哈尔滨: 哈尔滨理工大学, 2008.
HAN Z D. Preparation of novel graphite intercalation compounds and study on the expansion and flame retardant mechanism[D]. Harbin: Harbin University of Science and Technology, 2008. (in Chinese)
31
时虎. 石墨的开发及其应用[J]. 化工科技市场, 2001 (12): 24- 27.
SHI H . The development and application of graphite[J]. Chemical Technology Market, 2001 (12): 24- 27.
32
INAGAKI M , TASHIRO R , WASHINO Y I , et al. Exfoliation process of graphite via intercalation compounds with sulfuric acid[J]. Journal of Physics and Chemistry of Solids, 2004, 65 (2-3): 133- 137.
33
刘金鹏, 宋克敏. 可膨胀石墨制备研究[J]. 功能材料, 1998 (6): 659- 661.
LIU J P , SONG K M . Study on the preparation of expandable graphite[J]. Journal of Functional Materials, 1998 (6): 659- 661.
34
陈祖耀, 朱继平, 张增辉, 等. 可膨胀石墨的化学氧化法制备及其表征[J]. 中国科学技术大学学报, 1998, 28 (2): 205- 210.
CHEN Z Y , ZHU J P , ZHANG Z H , et al. Chemical preparation and characterization of expansible graphite by H2O2 oxidation[J]. Journal of China University of Science and Technology, 1998, 28 (2): 205- 210.
35
杨东兴, 康飞宇, 郑永平. 用H2O2-H2SO4合成低硫GIC的研究[J]. 炭素技术, 2000 (2): 6- 10.
YANG D X , KANG F Y , ZHENG Y P . Investigation on synthesis of low-sulfur GIC in H2O2-H2SO4 solution[J]. Carbon Techniques, 2000 (2): 6- 10.
36
周明善, 李澄俊, 徐铭, 等. 石墨层间化合物FeCl3-CrO3-GIC的制备及性能研究[J]. 无机化学学报, 2006, 22 (11): 2049- 2054.
ZHOU M S , LI C J , XU M , et al. Properties and preparation of graphite intercalation compound of FeCl3-CrO3-GIC[J]. Chinese Journal of Inorganic Chemistry, 2006, 22 (11): 2049- 2054.
37
赵彦亮, 刘菲, 谭俊华, 等. 新型钆石墨层间化合物复合材料的制备及表征[J]. 山西化工, 2013, 33 (1): 8- 11.
ZHAO Y L , LIU F , TAN J H , et al. Preparation and characterization of new Gd/graphite oxide intercalation compounds[J]. Shanxi Chemical Industry, 2013, 33 (1): 8- 11.
38
刘道志, 蓝国祥, 王华馥. 电流对电化学插层制备高氯酸石墨层间化合物的影响[J]. 化学物理学报, 1992, 5 (2): 155- 160.
LIU D Z , LAN G X , WANG H F . Effect of reaction current on electrochemical intercalation in synthesis of HClO4-graphite intercalation compounds[J]. Chinese Journal of Chemical Physics, 1992, 5 (2): 155- 160.
39
KANG F , LENG Y , ZHANG T Y . Electrochemical synthesis of graphite intercalation compounds in ZnCl2 aqueous solutions[J]. Carbon, 1996, 34 (7): 889- 894.
40
KANG F , LENG T , ZHANG T Y . Electrochemical synthesis and characterization of formic acid-graphite intercalation compound[J]. Carbon, 1997, 35 (8): 1089- 1096.
41
左明金, 康飞宇, 沈万慈. 用熔盐法合成FeCl3-ZnCl2三元石墨层间化合物[J]. 炭素技术, 1992 (3): 12- 16.
ZUO M J , KANG F Y , SHEN W C . The synthesis of FeCl3-ZnCl2-graphite intercalation compounds by using molten salts method[J]. Carbon Techniques, 1992 (3): 12- 16.
42
康飞宇, 周洲, 刘秀瀛. 用熔盐法合成FeCl3-CuCl2三元石墨层间化合物[J]. 碳素, 1991 (2): 11- 17.
KANG F Y , ZHOU Z , LIU X Y . Synthesis of FeCl3-CuCl2 ternary graphite intercalation compounds by fusion salt method[J]. Carbon, 1991 (2): 11- 17.
43
康飞宇, 周洲, 刘秀瀛. 用熔盐法合成FeCl3-CuCl2三元石墨层间化合物的稳定性[J]. 碳素, 1992 (1): 6- 12.
KANG F Y , ZHOU Z , LIU X Y . Stability of ternary FeCl3-CuCl2 GIG synthesized by fusion salt method[J]. Carbon, 1992 (1): 6- 12.
44
REN H , ZHANG T L , QIAO X J . Study on the stability of FeCl3-graphite intercalation compounds synthesized by molten salt method[J]. Energetic Materials, 2003, 11 (3): 138-140, 148.
45
REN H , KANG F Y , JIAO Q J , et al. Synthesis of a metal chloride-graphite intercalation compound by a molten salt method[J]. New Carbon Materials, 2009, 24 (1): 18- 22.
46
EL HAJJ I , SPEYER L , CAHEN S , et al. How to efficiently intercalate alkaline-earth metals into graphite using LiCl-KCl molten salts: An overview on the case of barium[J]. Carbon, 2023, 213, 118310.
47
盛银莹, 郑鹏, 张治国, 等. 熔融盐法制备CuCl2-石墨层间化合物及形成机理[J]. 华南理工大学学报(自然科学版), 2019, 47 (12): 99- 105.
SHENG Y Y , ZHENG P , ZHANG Z G , et al. Synthesis of CuCl2-graphite intercalation compounds in molten salt and their formation mechanism[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47 (12): 99- 105.
48
梁酷. 锂电正极材料的发展现状[J]. 信息记录材料, 2021, 22 (5): 25- 27.
LIANG K . Development status of cathode materials for lithium-ion batteries[J]. Information Recording Materials, 2021, 22 (5): 25- 27.
49
YAMAGUCHI S . In-situ electrochemical AFM observations of SEI film formation on graphite anodes[J]. TANSO, 1999, 1999 (186): 39- 44.
50
ZOU L , KANG F Y , ZHENG Y P , et al. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries[J]. Electrochimica Acta, 2009, 54 (15): 3930- 3934.
51
ZOU L , KANG F Y , LI X L , et al. Investigations on the modified natural graphite as anode materials in lithium ion battery[J]. Journal of Physics and Chemistry of Solids, 2008, 69 (5-6): 1265- 1271.
52
陈湘彪, 刘旋, 康飞宇, 等. 包覆鳞片石墨嵌锂行为的研究[J]. 电池, 2004, 34 (6): 394- 396.
CHEN X B , LIU X , KANG F Y , et al. Study of lithium intercalation into coated flake graphite[J]. Battery Bimonthly, 2004, 34 (6): 394- 396.
53
张平伟, 叶尚云, 李锡力, 等. 锂离子蓄电池用天然石墨负极材料[J]. 电源技术, 2007, 31 (4): 281- 284.
ZHANG P W , YE S Y , LI X L , et al. Modified spherically natural graphite anode material of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2007, 31 (4): 281- 284.
54
JO Y N , PARK M S , KIM J H , et al. Physical, electrochemical, and thermal properties of granulated natural graphite as anodes for Li-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2013, 13 (5): 3731- 3736.
55
ZHAO H P , REN J G , HE X M , et al. Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries[J]. Electrochimica Acta, 2007, 52 (19): 6006- 6011.
56
CAI W L , YAO Y X , ZHU G L , et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49 (12): 3806- 3833.
57
ZHAO Y , FU Y L , MENG Y , et al. Challenges and strategies of lithium-ion mass transfer in natural graphite anode[J]. Chemical Engineering Journal, 2024, 480, 148047.
58
ZENG X J , LIU D Q , WANG S W , et al. In situ observation of interface evolution on a graphite anode by scanning electrochemical microscopy[J]. ACS Applied Materials & Interfaces, 2020, 12 (33): 37047- 37053.
59
LI L D , LIU L D , HU Z , et al. Understanding high-rate K+-solvent co-intercalation in natural graphite for potassium-ion batteries[J]. Angewandte Chemie, 2020, 132 (31): 13017- 13024.
60
LIU Z M , LI S Z , MU J J , et al. Element-tailored quenching methods: Phase-defective K0.5Mn1-xCrxO2 cathode materials for potassium ion batteries[J]. Materials Today Chemistry, 2024, 40, 102251.
61
MU J J , ZHAO Z W , GAO X W , et al. Bimetallic PdFe3 nano-alloy with tunable electron configuration for boosting electrochemical nitrogen fixation[J]. Advanced Energy Materials, 2023, 14 (8): 2303558.
62
LAI Q S , MU J J , LIU Z M , et al. Tunnel-type Na2Ti6O13@carbon nanowires as anode materials for low-temperature sodium-ion batteries[J]. Batteries & Supercaps, 2023, 6 (4): e202200549.
63
FAN L , MA R F , ZHANG Q F , et al. Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie, 2019, 131 (31): 10610- 10615.
64
GE J M , ZHANG Q F , LIU Z M , et al. Solvothermal synthesis of graphene encapsulated selenium/carboxylated carbon nanotubes electrode for lithium-selenium battery[J]. Journal of Alloys and Compounds, 2019, 810, 151894.
65
LIU Z M , PENG W J , SHIH K M , et al. A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F[J]. Journal of Power Sources, 2016, 315, 294- 301.
66
LIU Z M , WANG J , LU B A . Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries[J]. Science Bulletin, 2020, 65 (15): 1242- 1251.
67
ZHONG L , QIU X Q , YANG S S , et al. Supermolecule-regulated synthesis strategy of general biomass-derived highly nitrogen-doped carbons toward potassium-ion hybrid capacitors with enhanced performances[J]. Energy Storage Materials, 2023, 61, 102887.
68
GONG Z Q , LIU Z M , GAO X W , et al. Constructing cyclic hydrogen bonding to suppress side reactions and dendrite formation on zinc anodes[J]. Chemistry, 2024, 30 (66): e202402558.
69
LIN C G , DAI P , WANG X L , et al. P2/O3 biphase integration promoting the enhancement of structural stability for sodium layered oxide cathode[J]. Chemical Engineering Journal, 2024, 480, 147964.
70
GE J M , FAN L , WANG J , et al. MoSe2/N-Doped carbon as anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2018, 8 (29): 1801477.
71
WANG J , LIU Z M , ZHOU J , et al. Insights into metal/metalloid-based alloying anodes for potassium ion batteries[J]. ACS Materials Letters, 2021, 3 (11): 1572- 1598.
72
YU W J , LIU Z M , YU X Z , et al. Balsa-wood-derived binder-free freestanding carbon foam as high-performance potassium anode[J]. Advanced Energy and Sustainability Research, 2021, 2 (6): 2100018.
73
HU Z , HAO J X , SHEN D Y , et al. Electro-spraying/spinning: A novel battery manufacturing technology[J]. Green Energy & Environment, 2024, 9 (1): 81- 88.
74
HAN X , GU L H , SUN Z F , et al. Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries[J]. Energy & Environmental Science, 2023, 16 (11): 5395- 5408.
75
WANG M , LIU Q R , WU G M , et al. Coral-Like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life[J]. Green Energy & Environment, 2023, 8 (2): 548- 558.
76
ZHANG W C , HUANG R , YAN X , et al. Carbon electrode materials for advanced potassium-ion storage[J]. Angewandte Chemie International Edition, 2023, 62 (43): e202308891.
77
GUO Z Q , ZHAO S Q , LI T X , et al. Recent advances in rechargeable magnesium-based batteries for high-efficiency energy storage[J]. Advanced Energy Materials, 2020, 10 (21): 1903591.
78
HU J , CHENG F Y , FANG C , et al. High-Voltage electrolyte design for a Ni-rich layered oxide cathode for lithium-ion batteries[J]. Science China Materials, 2023, 66 (8): 3046- 3053.
79
IMTIAZ S , ZHANG J , ZAFAR Z A , et al. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries[J]. Science China Materials, 2016, 59 (5): 389- 407.
80
LI L , ZHENG Y , ZHANG S L , et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11 (9): 2310- 2340.
81
LI Y J , GAO T T , NI D Y , et al. Two birds with one stone: Interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries[J]. Advanced Materials, 2022, 34 (5): 2107638.
82
LI Y P , ZHANG Q B , YU Y F , et al. Surface amorphization of vanadium dioxide (B) for K-ion battery[J]. Advanced Energy Materials, 2020, 10 (23): 2000717.
83
LEI H , LI J L , ZHANG X Y , et al. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries[J]. InfoMat, 2022, 4 (2): e12272.
84
JIAN Z L , LUO W , JI X L . Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137 (36): 11566- 11569.
85
YU L , HAN D , DONG J H , et al. Unveiling the Influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries[J]. Energy Storage Materials, 2020, 24, 319- 328.
86
LEI Y , CHEN Y C , WANG H W , et al. A graphite intercalation composite as the anode for the potassium-ion oxygen battery in a concentrated ether-based electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12 (33): 37027- 37033.
87
LI X J , LEI Y , QIN L , et al. Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries[J]. Carbon, 2021, 172, 200- 206.
88
YUAN F , LEI Y , WANG H W , et al. Pseudo-capacitance reinforced modified graphite for fast-charging potassium-ion batteries[J]. Carbon, 2021, 185, 48- 56.
89
RAHMAN M , HOU C P , MATETI S , et al. Documenting capacity and cyclic stability enhancements in synthetic graphite potassium-ion battery anode material modified by low-energy liquid phase ball milling[J]. Journal of Power Sources, 2020, 476, 228733.
90
WANG J L , LI S Q , CHEN M , et al. Synergistically competitive coordination for tailoring sodium cointercalation potential of graphite[J]. Nature Communications, 2025, 16 (1): 7628.
91
王刚. 柔性石墨基导热复合材料的制备及性能研究[D]. 北京: 清华大学, 2015.
WANG G. Study on flexible thermal conductive composite based on exfoliated graphite[D]. Beijing: Tsinghua University, 2015. (in Chinese)
92
祝叶, 夏新兴. 膨胀石墨的制备及结构研究[J]. 陕西科技大学学报, 2011, 29 (1): 29- 31.
ZHU Y , XIA X X . Study on the production and structure of expanded graphite[J]. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2011, 29 (1): 29- 31.
93
张鹏国, 黄火根. 膨胀石墨的化学氧化制备工艺优化[J]. 炭素技术, 2015, 34 (5): 22- 25.
ZHANG P G , HUANG H G . Optimization on the preparation technique of expanded graphite produced by chemical oxidation[J]. Carbon Techniques, 2015, 34 (5): 22- 25.
94
彭俊芳, 康飞宇, 黄正宏. 填充氧化铁颗粒的石墨基复合材料[J]. 材料科学与工程, 2002, 20 (4): 469- 472.
PENG J F , KANG F Y , HUANG Z H . Graphite based composite embedded with ferric oxide particles[J]. Materials Science & Engineering, 2002, 20 (4): 469- 472.
95
傅云峰. 超低硫可膨胀石墨及可膨胀石墨复合材料制备研究[D]. 北京: 清华大学, 2003.
FU Y F. A study on preparation of ultra-low sulfur content expansible graphite and EG composite[D]. Beijing: Tsinghua University, 2003. (in Chinese)
96
黄雪, 崔英德, 尹国强, 等. 月桂酸-膨胀石墨复合相变材料的制备及性能[J]. 化工学报, 2015, 66 (S1): 370- 376.
HUANG X , CUI Y D , YIN G Q , et al. Preparation and performance of lauric acid-expanded graphite composite phase change materials[J]. CIESC Journal, 2015, 66 (S1): 370- 376.
97
LI X X , ZHAO J J , MA D Y , et al. Preparation and extinction behaviour of expanded graphite to 1.064 micrometer laser[J]. Acta Photonica Sinica, 2016, 45 (4): 0414001.
98
GULER T , TAYFUN U , BAYRAMLI E , et al. Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral[J]. Thermochimica Acta, 2017, 647, 70- 80.
99
罗立群, 刘斌, 王召, 等. 低温可膨胀石墨的制备及插层过程特性[J]. 化工进展, 2017, 36 (10): 3778- 3785.
LUO L Q , LIU B , WANG Z , et al. Preparation of low temperature expandable graphite and the characteristics of intercalation[J]. Chemical Industry and Engineering Progress, 2017, 36 (10): 3778- 3785.
100
谷成林. 稠油注蒸汽用低温可膨胀石墨体系制备及封窜机理研究[D]. 青岛: 中国石油大学(华东), 2020.
GU C L. Study on Preparation of low-temperature expandable graphite system and channeling control mechanism for heavy oil development by steam injection[D]. Qingdao: China University of Petroleum (East China), 2020. (in Chinese)
101
LI J H , LIU Q , DA H F . Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature[J]. Materials Letters, 2006, 61 (8-9): 1832- 1834.
102
TRYBA B , MORAWSKI A W , INAGAKI M . Preparation of exfoliated graphite by microwave irradiation[J]. Carbon, 2005, 43 (11): 2417- 2419.
103
刘天琦. 氧化石墨烯膜层间通道的外源性调控及其对锂和氘的提取研究[D]. 兰州: 兰州大学, 2025.
LIU T Q. Exogenous regulation of interlayer channels in graphene oxide membranes for lithium and deuterium extraction[D]. Lanzhou: Lanzhou University, 2025. (in Chinese)
104
HOANG N B , NGUYEN T T , NGUYEN T S , et al. The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution[J]. Cogent Engineering, 2019, 6 (1): 1584939.
105
SYKAM N , JAYRAM D N , RAO G M . Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism[J]. Journal of Water Process Engineering, 2018, 25, 128- 137.
106
SYKAM N , JAYRAM N D , RAO G M . Exfoliation of graphite as flexible SERS substrate with high dye adsorption capacity for rhodamine 6G[J]. Applied Surface Science, 2019, 471, 375- 386.
107
GENG X M , GUO Y F , LI D F , et al. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene[J]. Scientific Reports, 2013, 3, 1134.
108
LIN S , DONG L , ZHANG J J , et al. Room-temperature intercalation and ~1000-fold chemical expansion for scalable preparation of high-quality graphene[J]. Chemistry of Materials, 2016, 28 (7): 2138- 2146.
109
DIMIEV A M , CERIOTTI G , METZGER A , et al. Chemical mass production of graphene nanoplatelets in ~100% yield[J]. ACS Nano, 2016, 10 (1): 274- 279.
110
LIU T , ZHANG R J , ZHANG X S , et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119, 544- 547.
111
HOU B , SUN H J , PENG T J , et al. Rapid preparation of expanded graphite at low temperature[J]. New Carbon Materials, 2020, 35 (3): 262- 268.
112
KANG F Y , LENG Y , ZHANG T Y . Influences of H2O2 on synthesis of H2SO4-GICs[J]. Journal of Physics and Chemistry of Solids, 1996, 57 (6-8): 889- 892.
113
HOU S Y , HE S J , ZHU T L , et al. Environment-friendly preparation of exfoliated graphite and functional graphite sheets[J]. Journal of Materiomics, 2020, 7 (1): 136- 145.
114
侯诗宇, 赵永涛, 李吉辉, 等. 天然石墨的室温膨化及应用[J]. 矿冶, 2025, 34 (5): 693-709, 754.
HOU S Y , ZHAO Y T , LI J H , et al. Preparation and application of exfoliated graphite by room-temperature exfoliation[J]. Mining and Metallurgy, 2025, 34 (5): 693-709, 754.
115
YANG X Y , HOU S Y , XU D P , et al. Nano-silicon embedded in mildly-exfoliated graphite for lithium-ion battery anode materials[J]. Advanced Powder Technology, 2024, 35 (5): 104463.
116
LI J H , LUO W , CUI X K , et al. Hydrothermal synthesis of SnO2/MoO3-x/rGO ternary nanocomposites as a high-performance anode for lithium ion batteries[J]. Electrochimica Acta, 2024, 503, 144907.
117
WEI L , REN X L , HOU S Y , et al. SnO2/Sn particles anchored in moderately exfoliated graphite as the anode of lithium-ion battery[J]. Electrochimica Acta, 2023, 442, 141908.
118
HAO S L , HOU S Y , LIU Y , et al. Enhanced anticorrosion of waterborne epoxy coatings by electrochemical exfoliated graphene oxide[J]. Progress in Organic Coatings, 2025, 202, 109147.
119
HAO S L , WAN S M , HOU S Y , et al. Amino-modified graphene oxide from Kish graphite for enhancing corrosion resistance of waterborne epoxy coatings[J]. Materials, 2024, 17 (5): 1220.
120
曹乃珍, 沈万慈, 刘英杰, 等. 膨胀石墨的微观孔结构分析[J]. 炭素技术, 1996 (1): 1- 6.
CAO N Z , SHEN W C , LIU Y J , et al. Analysis on the micro-porous-structure of expanded graphite[J]. Carbon Techniques, 1996 (1): 1- 6.
121
曹乃珍. 膨胀石墨的微观结构及吸附性能[D]. 北京: 清华大学, 1997.
CAO N Z. The micro-structure and adsorption performances of expanded graphite[D]. Beijing: Tsinghua University, 1997. (in Chinese)
122
周伟, 兆恒, 胡小芳, 等. 膨胀石墨水中吸油行为及机理的研究[J]. 水处理技术, 2001, 27 (6): 335- 337.
ZHOU W , ZHAO H , HU X F , et al. Behavior and mechnism of oil sorption on expanded graphitc[J]. Technology of Water Treatment, 2001, 27 (6): 335- 337.
123
INAGAKI M , SUWA T . Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs[J]. Carbon, 2001, 39 (6): 915- 920.
124
王海宁. 膨胀石墨的孔结构表征和吸附行为研究[D]. 北京: 清华大学, 2002.
WANG H N. An investigation on pore structure characterization and adsorption performance of exfoliated graphite[D]. Beijing: Tsinghua University, 2002. (in Chinese)
125
TOYODA M , MORIYA K , AIZAWA J I , et al. Sorption and recovery of heavy oils by using exfoliated graphite part Ⅰ: Maximum sorption capacity[J]. Desalination, 2000, 128 (3): 205- 211.
126
KANG F Y , ZHENG Y P , WANG H N , et al. Effect of preparation conditions on the characteristics of exfoliated graphite[J]. Carbon, 2002, 40 (9): 1575- 1581.
127
MARYSIN I, SHELEF G, SANDBANK E. Removal of oil from water: U.S. Patent 5, 282, 975[P]. 1994-2-1.
128
沈万慈, 王鲁宁. 膨胀石墨——油污染水处理的新材料[C]//非金属矿物材料与环保、生态、健康研讨会论文集. 北京: 中国硅酸盐学会非金属矿专业委员会, 国家建材工业科技教育委员会, 2003: 18-23.
SHEN W C, WANG L N. Expanded graphite: A new material for oil-contaminated water treatment[C]//Symposium on Non-Metallic Mineral Materials and Environmental Protection, Ecology and Health. Beijing, China: The Non-metallic Minerals Professional Committee of the Chinese Society for Silicate Materials, National Building Materials Industry Science and Technology Education Committee, 2003: 18-23. (in Chinese)
129
TOYODA M , INAGAKI M . Heavy oil sorption using exfoliated graphite: New application of exfoliated graphite to protect heavy oil pollution[J]. Carbon, 2000, 38 (2): 199- 210.
130
INAGAKI M , SHIBATA K , SETOU S , et al. Sorption and recovery of heavy oils by using exfoliated graphite Part Ⅲ: Trials for practical applications[J]. Desalination, 2000, 128 (3): 219- 222.
131
INAGAKI M , KONNO H , TOYODA M , et al. Sorption and recovery of heavy oils by using exfoliated graphite Part Ⅱ: Recovery of heavy oil and recycling of exfoliated graphite[J]. Desalination, 2000, 128 (3): 213- 218.
132
SHEN W C, CAO N Z, ZOU L, et al. Liquid-phase adsorption performance on expanded graphite[C]//International Symposium of Carbon. 1998: 384.
133
ZHENG Y P , WANG H N , KANG F Y , et al. Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles[J]. Carbon, 2004, 42 (12-13): 2603- 2607.
134
HOU S Y , ZHU T L , SHEN W C , et al. Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil-water separation[J]. Journal of Hazardous Materials, 2022, 424, 127724.
135
TAKEUCHI K , FUJISHIGE M , KITAZAWA H , et al. Oil sorption by exfoliated graphite from dilute oil-water emulsion for practical applications in produced water treatments[J]. Journal of Water Process Engineering, 2015, 8, 91- 98.
136
TAKEUCHI K , KITAZAWA H , FUJISHIGE M , et al. Oil removing properties of exfoliated graphite in actual produced water treatment[J]. Journal of Water Process Engineering, 2017, 20, 226- 231.
137
王会丽, 赵越, 马乐宽, 等. 复合改性膨胀石墨的制备及对酸性艳蓝染料的吸附[J]. 高等学校化学学报, 2016, 37 (2): 335- 341.
WANG H L , ZHAO Y , MA L K , et al. Preparation of composite modified expanded graphite and its adsorption on acid brilliant blue dye[J]. Chemical Journal of Chinese Universities, 2016, 37 (2): 335- 341.
138
刘霂宇, 邱杨率, 张凌燕. 膨胀石墨负载铁氰化铜吸附Cs+特性研究[J]. 环境污染与防治, 2023, 45 (11): 1554- 1558.
LIU M Y , QIU Y S , ZHANG L Y . Adsorption characteristics of Cs+ by expanded graphite loaded with copper ferricyanide[J]. Environmental Pollution & Control, 2023, 45 (11): 1554- 1558.
139
朱敏聪. 膨胀石墨基复合材料的制备、改性及其对水中特定污染物去除的研究[D]. 上海: 东华大学, 2012.
ZHU M C. New expanded graphite-based composites: Preparation, modification and their use in specified pollutants removal feom aqueous solution[D]. Shanghai: Donghua University, 2012. (in Chinese)
140
王鲁宁, 陈希, 郑永平, 等. 膨胀石墨处理毛纺厂印染废水的应用研究[J]. 中国非金属矿工业导刊, 2004 (5): 59- 62.
WANG L N , CHEN X , ZHENG Y P , et al. Application research of expanded graphite in treating printing and dyeing wastewater from woolen mills[J]. China Non-metallic Minerals Industry, 2004 (5): 59- 62.
141
陈飞, 许国根. 关于膨胀石墨对印染废水吸附脱色的研究[J]. 中国高新技术企业, 2009 (11): 99- 100.
CHEN F , XU G G . Study on adsorption and decolorization of printing and dyeing wastewater by expanded graphite[J]. China High-Tech Enterprises, 2009 (11): 99- 100.
142
赵颖华. 膨胀石墨的制备及其对金属离子去除性能的研究[D]. 上海: 东华大学, 2012.
ZHAO Y H. Experimental study on preparation and metal ions removal capability of expanded graphite[D]. Shanghai: Donghua University, 2012. (in Chinese)
143
LI S D , TIAN S H , DU C M , et al. Vaseline-loaded expanded graphite as a new adsorbent for toluene[J]. Chemical Engineering Journal, 2010, 162 (2): 546- 551.
144
沈万慈, 曹乃珍, 李晓峰, 等. 多孔石墨吸附材料的生物医学应用研究[J]. 新型碳材料, 1998, 13 (1): 50- 54.
SHEN W C , CAO N Z , LI X F , et al. Researches on the biomedical applications of porous graphite adforption materials[J]. New Carbon Materials, 1998, 13 (1): 50- 54.
145
LIU Z Q , HAO Y S , SU Y J , et al. A novel and facile prepared wound dressing based on large expanded graphite worms[J]. Journal of Materials Research, 2019, 34 (4): 490- 499.
146
HOU S Y , LI J H , HUANG X C , et al. Silver nanoparticles-loaded exfoliated graphite and its anti-bacterial performance[J]. Applied Sciences, 2017, 7 (8): 852.
147
张江锋. 柔性石墨复合密封材料制品的物理性能和机械性能研究[J]. 造纸装备及材料, 2020, 49 (3): 60.
ZHANG J F . Study on physical and mechanical properties of flexible graphite composite sealing materials products[J]. Papermaking Equipment & Materials, 2020, 49 (3): 60.
148
饶娟, 张盼, 何帅, 等. 天然石墨利用现状及石墨制品综述[J]. 中国科学: 技术科学, 2017, 47 (1): 13- 31.
RAO J , ZHANG P , HE S , et al. A review on the utilization of natural graphite and graphite-based materials[J]. Scientia Sinica Technologica, 2017, 47 (1): 13- 31.
149
任京成, 沈万慈, 杨赞中, 等. 柔性石墨材料和膨胀石墨材料的现状及发展趋势[J]. 非金属矿, 1999, 22 (5): 5-7, 9.
REN J C , SHEN W C , YANG Z Z , et al. Current situation and development trend of flexible graphite materials and expanded graphite materials[J]. Non-Metallic Mines, 1999, 22 (5): 5-7, 9.
150
杜韶川, 邱杨率, 吴益民, 等. 聚四氟乙烯真空加压浸渍改性柔性石墨垫片研究[J]. 硅酸盐通报, 2023, 42 (10): 3732- 3740.
DU S C , QIU Y S , WU Y M , et al. PTFE vacuum pressure impregnation modification flexible graphite gasket[J]. Bulletin of the Chinese Ceramic Society, 2023, 42 (10): 3732- 3740.
151
何富超. 柔性石墨密封材料制备及其性能研究[D]. 武汉: 武汉理工大学, 2019.
HE F C. The study of preparation and properties of flexible graphite sealing materials[D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese)
152
贾晓红, 陈华明, 励行根, 等. 石墨垫片密封界面的力学特性[J]. 清华大学学报(自然科学版), 2016, 56 (2): 167- 170.
JIA X H , CHEN H M , LI X G , et al. Mechanical properties of a graphite gasket sealing interface[J]. Journal of Tsinghua University (Science and Technology), 2016, 56 (2): 167- 170.
153
谢苏江, 朱宗亮. 高温抗氧化柔性石墨密封材料的制备和性能研究[J]. 流体机械, 2017, 45 (2): 12-16, 70.
XIE S J , ZHU Z L . The preparation and performance research of high temperature oxidation resistance of graphite[J]. Fluid Machinery, 2017, 45 (2): 12-16, 70.
154
ZHAO X Y , ZHANG X Y , LI K . High pressure sealing characteristics of combined structure based on flexible graphite rings[J]. Advances in Mechanical Engineering, 2023, 15 (6): 1- 9.
155
童叶龙, 陶则超, 李一凡, 等. 碳基高导热材料及其在航天器上的应用[J]. 中国空间科学技术, 2022, 42 (1): 131- 138.
TONG Y L , TAO Z C , LI Y F , et al. Carbon materials with high thermal conductivity and its application in spacecraft[J]. Chinese Space Science and Technology, 2022, 42 (1): 131- 138.
156
LEE S Y , SHIN H K , PARK M , et al. Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity[J]. Carbon, 2014, 68, 67- 72.
157
LIU Y H , QU B X , WU X N , et al. Utilizing ammonium persulfate assisted expansion to fabricate flexible expanded graphite films with excellent thermal conductivity by introducing wrinkles[J]. Carbon, 2019, 153, 565- 574.
158
HOU S Y , LIU Y , YU Q T , et al. Molecular simulation and experimental investigation of thermal conductivity of flexible graphite film[J]. Journal of Materiomics, 2024, 10 (6): 1261- 1269.
159
武涛, 郑永平, 黄正宏, 等. 柔性石墨双极板透气性的研究[J]. 材料科学与工程学报, 2005, 23 (2): 196- 199.
WU T , ZHENG Y P , HUANG Z H , et al. Study on the permeability of bipolar plates prepared by flexible graphite[J]. Journal of Materials Science and Engineering, 2005, 23 (2): 196- 199.
160
王春生, 孙英蕃, 田明磊, 等. 耐高温石墨颗粒-凝胶复配调剖剂研制及性能评价[J]. 油田化学, 2016, 33 (1): 56- 62.
WANG C S , SUN Y F , TIAN M L , et al. Development and performance evaluation of graphite particle-gel complex profile control system[J]. Oilfield Chemistry, 2016, 33 (1): 56- 62.
161
肖庆宁, 甘全全, 戴威. 一种高导电性复合双极板及其制备方法和应用: CN117154124A[P]. 2023-12-01.
XIAO Q N, GAN Q Q, DAI W. High-conductivity composite bipolar plate as well as preparation method and application thereof: CN117154124A[P]. 2023-12-01. (in Chinese)
162
郑永平, 沈万慈, 冯彪. 一种高强度柔性石墨双极板及其制备方法: CN102569834A[P]. 2012-07-11.
ZHENG Y P, SHEN W C, FENG B. High-intensity flexible graphite double-pole plate and preparation method thereof: CN102569834A[P]. 2012-07-11. (in Chinese)
163
史惟澄, 杨代军, 刘金玲, 等. 燃料电池模压膨胀石墨/树脂复合双极板研究[J]. 电源技术, 2013, 37 (2): 324- 328.
SHI W C , YANG D J , LIU J L , et al. Study on mould pressing composite bipolar plates made of expanded graphite/resin for fuel cells[J]. Chinese Journal of Power Sources, 2013, 37 (2): 324- 328.
164
陈惠, 刘洪波, 涂文懋, 等. 膨胀石墨/酚醛树脂复合材料双极板研究[J]. 中南大学学报(自然科学版), 2011, 42 (11): 3326- 3330.
CHEN H , LIU H B , TU W M , et al. Study on expanded graphite/phenolic resin carbon composite bipolar plate[J]. Journal of Central South University (Science and Technology), 2011, 42 (11): 3326- 3330.
165
常丰瑞, 黄俭标, 刘金玲, 等. 膨胀石墨/聚酰亚胺复合材料双极板的制备研究[J]. 化工新型材料, 2015, 43 (5): 65-67, 85.
CHANG F R , HUANG J B , LIU J L , et al. Preparation of expanded graphite/polyimide composite bipolar plates[J]. New Chemical Materials, 2015, 43 (5): 65-67, 85.
166
花仕洋, 徐增师, 余罡, 等. 膨胀石墨在燃料电池双极板中的应用综述[J]. 船电技术, 2018, 38 (4): 11- 16.
HUA S Y , XU Z S , YU G , et al. Review of expanded graphite in fuel cell bipolar plate[J]. Marine Electric & Electronic Engineering, 2018, 38 (4): 11- 16.
167
黄道春, 陈家宏, 谷山强, 等. 石墨基柔性接地材料特性及其在防雷接地中的应用[J]. 高电压技术, 2018, 44 (6): 1766- 1773.
HUANG D C , CHEN J H , GU S Q , et al. Characteristics of flexible graphite grounding material and its application in lightning protection[J]. High Voltage Engineering, 2018, 44 (6): 1766- 1773.
168
申克, 李宽, 黄正宏, 等. 天然微晶石墨为骨料乳化沥青为黏结剂的人造石墨研究[C]//2015中国石墨产业发展论坛. 鸡西: 中国非金属矿工业协会, 2015: 84-88.
SHEN K, LI K, HUANG Z H, et al. Study on artificial graphite with natural microcrystalline graphite as aggregate and emulsified asphalt as binder[C]//Proceedings of 2015 China Graphite Industry Development Forum. Jixi, China: China Non-metallic Minerals Industry Association, 2015: 84-88. (in Chinese)
169
申克, 黄正宏, 杨俊和, 等. 以中间相沥青微球制备各向同性石墨及其物理性质[C]//第22届炭—石墨材料学术会论文集. 宁波: 中国电工技术学会碳·石墨材料专业委员会, 2010: 231-237.
SHEN K, HUANG Z H, YANG J H, et al. Isotropic graphite and its physical properties from mesophase pitch microbeads[C]//Proceedings of the 22nd Carbon-Graphite Materials Academic Conference. Ningbo, China: The Specific Committee on Carbon-Graphite Materials of the China Electrotechnical Society, 2010: 231-237. (in Chinese)
170
JONES A N , HALL G N , JOYCE M , et al. Microstructural characterisation of nuclear grade graphite[J]. Journal of Nuclear Materials, 2008, 381 (1-2): 152- 157.
171
印友法. 不同石墨材料力学性能与孔隙率的相关性研究[J]. 炭素技术, 1991 (4): 1- 4.
YIN Y F . A study on the correlation between mechanical properties and porosities of different graphite materials[J]. Carbon Techniques, 1991 (4): 1- 4.
172
王宁, 申克, 郑永平, 等. 微晶石墨制备各向同性石墨的研究[J]. 中国非金属矿工业导刊, 2011 (2): 11-13, 27.
WANG N , SHEN K , ZHENG Y P , et al. Study on preparation of isotropic graphite with natural amorphous graphite[J]. China Non-metallic Minerals Industry, 2011 (2): 11-13, 27.
173
LI K , SHEN K , HUANG Z H , et al. Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation[J]. Fuel, 2016, 180, 743- 748.
174
黄荣锦. 石墨烯获取方法与应用研究[J]. 中国矿业, 2025, 34 (S1): 583- 588.
HUANG R J . Research on the acquisition method and application of graphene[J]. China Mining Magazine, 2025, 34 (S1): 583- 588.
175
CHEN J F , DUAN M , CHEN G H . Continuous mechanical exfoliation of graphene sheets via three-roll mill[J]. Journal of Materials Chemistry, 2012, 22 (37): 19625- 19628.
176
王振廷, 戴东言, 李洋, 等. 石墨烯的机械剥离法制备及表征[J]. 黑龙江科技大学学报, 2018, 28 (2): 200- 203.
WANG Z T , DAI D Y , LI Y , et al. Graphene Preparation by mechanical exfoliation and its characterization[J]. Journal of Heilongjiang University of Science & Technology, 2018, 28 (2): 200- 203.
177
MOON J Y , KIM M , KIM S I , et al. Layer-engineered large-area exfoliation of graphene[J]. Science Advances, 2020, 6 (44): eabc6601.
178
ZHANG H , XIANG Q X , LIU Z Y , et al. Supercritical mechano-exfoliation process[J]. Nature Communications, 2024, 15 (1): 9329.
179
PANG K X , FANG X K , YE C R , et al. Efficient production of graphene through a partially frozen suspension exfoliation process: An insight into the enhanced interaction based on solid-solid interfaces[J]. Nano Letters, 2024, 24 (44): 14102- 14108.
180
GU W T , ZHANG W , LI X M , et al. Graphene sheets from worm-like exfoliated graphite[J]. Journal of Materials Chemistry, 2009, 19 (21): 3367- 3369.
181
BRODIE B C. XⅢ . On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149, 249- 259.
182
HUMMERS JR W S , OFFEMAN R E . Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339.
183
CASTRO K L S , CURTI R V , ARAUJO J R , et al. Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study[J]. Thin Solid Films, 2016, 610, 10- 18.
184
XIE B H , YANG C , ZHANG Z X , et al. Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics[J]. ACS Nano, 2015, 9 (6): 5636- 5645.
185
SUN P Z , WANG K L , ZHU H W . Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications[J]. Advanced Materials, 2016, 28 (12): 2287- 2310.
186
YAO B W , CHEN J , HUANG L , et al. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures[J]. Advanced Materials, 2016, 28 (8): 1623- 1629.
187
YU X W , CHENG H H , ZHANG M , et al. Graphene-based smart materials[J]. Nature Reviews Materials, 2017, 2 (9): 17046.
188
XU Y X , SHENG K X , LI C , et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4 (7): 4324- 4330.
189
ZHANG L F , WEI W , LU W , et al. Graphene-based macroform: Preparation, properties and applications[J]. Carbon, 2013, 63, 593.
190
王露. 改进Hummers法制备氧化石墨烯及其表征[J]. 包装学报, 2015, 7 (2): 28-31, 37.
WANG L . Synthesis and characterization of graphene oxide with improved hummers method[J]. Packaging Journal, 2015, 7 (2): 28-31, 37.
191
陈瑞灿, 王海燕, 韩永刚, 等. 氧化还原法制备石墨烯及其表征[J]. 材料导报, 2012, 26 (12): 114- 117.
CHEN R C , WANG H Y , HAN Y G , et al. Synthesis and characterization of graphene via oxidation reduction[J]. Materials Reports, 2012, 26 (12): 114- 117.
192
YUAN H , YE J L , YE C R , et al. Highly efficient preparation of graphite oxide without water enhanced oxidation[J]. Chemistry of Materials, 2021, 33 (5): 1731- 1739.
193
LI P , XU Z , LIU Z , et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6, 5716.
194
万嗣明. Kish石墨基氧化石墨烯复合涂层的制备及防腐性能研究[D]. 北京: 中国矿业大学(北京), 2017.
WAN S M. Preparation and anticorrosion performance of Kish graphite-based graphene oxide composite coatings[D]. Beijing: China University of Mining and Technology (Beijing), 2017. (in Chinese)
195
杨晓勇, 卫洛, 许德平, 等. 石墨烯的电化学制备及其在储能领域的应用[J]. 化学工业与工程, 2019, 36 (6): 42- 54.
YANG X Y , WEI L , XU D P , et al. Electrochemical preparation of graphene and application in fields of energy storage[J]. Chemical Industry and Engineering, 2019, 36 (6): 42- 54.
196
PEI S F , WEI Q W , HUANG K , et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation[J]. Nature Communications, 2018, 9 (1): 145.
197
ZHANG Y , XU Y L . Simultaneous Electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene[J]. Advanced Functional Materials, 2019, 29 (37): 1902171.
198
YU Q T , LUO W , YANG X Y , et al. Electrochemical synthesis of graphene oxide from graphite flakes exfoliated at room temperature[J]. Applied Surface Science, 2022, 598, 153788.
199
LI H , TAO Y , ZHENG X Y , et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science, 2016, 9 (10): 3135- 3142.
200
ZHAN C Z , LIU W , HU M X , et al. High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: Surpassing the performance of lithium-ion capacitors in a uniform system[J]. NPG Asia Materials, 2018, 10 (8): 775- 787.
201
ZHANG W J , PAN Z Z , LV W , et al. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries[J]. Carbon, 2019, 153, 625- 633.
202
WANG Y T , HU M X , AI D S , et al. Sulfur-doped reduced graphene oxide for enhanced sodium ion pseudocapacitance[J]. Nanomaterials, 2019, 9 (5): 752.
203
BALANDIN A A , GHOSH S , BAO W Z , et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902- 907.
204
SONG H F , KANG F Y . Recent progress on thermal conduction of graphene[J]. Acta Physico-Chimica Sinica, 2022, 38 (1): 2101013.
205
XIN G Q , SUN H T , HU T , et al. Large-area freestanding graphene paper for superior thermal management.[J]. Advanced Materials (deerfield Beach, Fla.), 2014, 26, 4521- 4526.
206
KUMAR P , SHAHZAD F , YU S , et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J]. Carbon, 2015, 94, 494- 500.
207
PENG L , XU Z , LIU Z , et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials, 2017, 29 (27): 1700589.
208
HU Y , CHIANG S W , CHU X D , et al. Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials[J]. Journal of Materials Science, 2020, 55 (22): 9414- 9424.
209
冷向星, 郑心纬, 杜鸿达, 等. 电纺高导热GO/PEO纤维的制备及性能[J]. 新型炭材料, 2018, 33 (2): 125- 130.
LENG X X , ZHENG X W , DU H D , et al. Preparation and properties of electrospun GO/PEO nanofibers[J]. New Carbon Materials, 2018, 33 (2): 125- 130.
210
YUAN Z Z , CHEN W , SHI Y K , et al. Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide[J]. New Carbon Materials, 2022, 36 (5): 940- 947.
211
郭泽宇, 黄正宏, 康飞宇. 热处理温度对石墨烯/炭纳米复合纤维催化氧化NO性能的影响[J]. 新型炭材料, 2017, 32 (4): 338- 343.
GUO Z Y , HUANG Z H , KANG F Y . The effect of the NH3 activation temperature of graphene/carbon composite nanofibers on their NO catalytic oxidation performance at room temperature[J]. New Carbon Materials, 2017, 32 (4): 338- 343.
212
LIU G Q , WANG M X , HUANG Z H , et al. Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol[J]. New Carbon Materials, 2015, 30 (6): 566- 571.
213
BAI Y , HUANG Z H , KANG F Y . Synthesis of reduced graphene oxide/phenolic resin-based carbon composite ultrafine fibers and their adsorption performance for volatile organic compounds and water[J]. Journal of Materials Chemistry A, 2013, 1 (33): 9536- 9543.
214
HUANG Z H , LIU G Q , KANG F Y . Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal[J]. ACS Applied Materials & Interfaces, 2012, 4 (9): 4942- 4947.
215
FAN Y Y , TU H L , PANG Y , et al. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection[J]. Rare Metals, 2020, 39 (6): 651- 658.
216
MI W T , CHIU S W , XUE T , et al. Highly sensitive and portable gas sensing system based on reduced graphene oxide[J]. Tsinghua Science and Technology, 2016, 21 (4): 435- 441.
217
YANG D G , YANG N , NI J M , et al. First-principles approach to design and evaluation of graphene as methane sensors[J]. Materials & Design, 2017, 119, 397- 405.

基金

国家重点研发计划(2021YFC2902904)

版权

版权所有,未经授权,不得转载。
PDF(35324 KB)

审稿意见

Accesses

Citation

Detail

段落导航
相关文章

/