球床式反应堆高温燃料球流耦合模拟研究新进展

卢铁忠, 邹铨, 吴梦奇, 罗一洋, 桂南, 杨星团, 姜胜耀

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (12) : 2522-2538.

PDF(12407 KB)
PDF(12407 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (12) : 2522-2538. DOI: 10.16511/j.cnki.qhdxxb.2025.21.052
 

球床式反应堆高温燃料球流耦合模拟研究新进展

作者信息 +

New advances in coupled simulation of high-temperature pebble flow in pebble-bed reactors

Author information +
文章历史 +

摘要

针对球床式反应堆高温球流耦合模拟研究的新进展, 重点阐述了球流与传热机理基础研究; 在反应堆全堆芯尺度数值模拟与人工智能方面, 近期取得了突破性进展。主要涵盖三大方向:球流模拟技术, 传热机理研究, 智能算法应用。核心成果是自主研发的GRAPE三维并行计算平台, 在普通工作站实现了千万级球流系统的高精度高效模拟; 发展了球尺度传热模型; 融合了神经网络加速的辐射传热算法与改进的网格搜索技术, 展现出优异的全堆芯球床温度场预测能力, 开发了RT-Net多分支卷积网络和Pre-Net图像生成网络。上述成果标志着球流研究方法论的质的飞跃, 不仅解决了该领域的关键技术难题, 更为高温多相球流系统的多物理场耦合分析建立了新范式, 并指出了今后高温气冷堆堆芯研发的重点问题及发展方向。

Abstract

Significance: In 2023, China marked a significant milestone in nuclear energy development, becoming the first nation to successfully commercialize fourth-generation high-temperature gas-cooled reactor (HTGR) technology. This accomplishment represents a substantial advancement in nuclear power generation, offering enhanced safety features, improved thermal efficiency, and greater operational flexibility compared with conventional reactor designs. Progress: This paper provides a comprehensive and systematic examination of recent advancements in coupled simulation methodologies for high-temperature pebble flow dynamics within pebble-bed reactor cores, focusing on elucidating the fundamental physical mechanisms governing granular flow behavior and heat transfer processes. These mechanisms are critical for optimizing HTGR performance metrics, operational reliability, and safety parameters. Historically, research in this domain has faced two primary limitations. First, there have been methodological shortcomings in accurately modeling the complex multiphysics phenomena involved. Second, there have been substantial computational resource requirements, virtually rendering full-core-scale numerical investigations of the HTR-PM reactor configuration impractical. This study makes significant breakthroughs by developing innovative computational frameworks and artificial intelligence-enhanced methodologies. It systematically examines three key research areas. The first area is modeling and simulation techniques, including the discrete element method (DEM) for pebble flow characterization, computation fluid dynamics—DEM coupling methodologies, and graphical processing unit (GPU)-accelerated DEM software development. The second is heating transfer mechanisms, encompassing intra-and inter-particle conduction models, convective heat transfer formulations, and high-temperature radiative heat transfer approaches. The third is artificial intelligence (AI)-enhanced methodologies featuring the use of neural networks for pebble residence time prediction, future state forecasting networks, and convolutional neural networks-based radiative view factor estimation. A significant component of this study is the creation of GRAPE, a proprietary three-dimensional DEM-based numerical model that incorporates GPU heterogeneous parallel acceleration. This approach facilitates efficient simulation of pebble flow dynamics with up to tens of millions of particles on standard workstations while maintaining superior computational accuracy. The study's particle-scale heat transfer model integrates neural network-accelerated radiative heat transfer computation with enhanced mesh search algorithms, demonstrating remarkable capability in predicting pebble-bed temperature distributions at reactor core scales. Furthermore, the introduction of two novel deep learning architectures represents a significant advancement in pebble flow research methodologies. RT-Net is a multi-branch convolutional network designed for real-time pebble flow residence time prediction, and Pre-Net is an image generation network employing guided learning principles to forecast pebble flow evolution. These AI-driven tools, integrated within our integrated computational framework, serve to not only address critical research gaps but also establish new paradigms for analyzing multiphysics coupling in high-temperature multiphase particle systems. This development marks a substantial advancement in HTGR core research and development through key innovations, including the GRAPE simulation platform, neural network-enhanced heat transfer modeling, and pioneering applications of deep learning in pebble flow prediction. Conclusions and Prospects: These advancements provide a theoretical foundation and the practical tools necessary to address the next generation of challenges in nuclear energy technology, particularly in reactor safety, operational optimization, and the development of even more advanced reactor designs. Through a review, elaboration, and synthesis of these key issues, this paper identifies critical challenges and future research directions for developing high-temperature gas-cooled reactor cores, as well as high-temperature multiphase particle flow and multiphysics coupling.

关键词

高温气冷堆 / 球床流动传热 / 计算流体力学-离散单元法(CFD-DEM)耦合 / 图形处理器(GPU) / 卷积神经网络(CNN)

Key words

high-temperature gas-cooled reactor / pebble bed flow and heat transfer / computational fluid dynamics-discrete element method (CFD-DEM) coupling / graphic processing unit (GPU) / convolutional neural network (CNN)

引用本文

导出引用
卢铁忠, 邹铨, 吴梦奇, . 球床式反应堆高温燃料球流耦合模拟研究新进展[J]. 清华大学学报(自然科学版). 2025, 65(12): 2522-2538 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.052
Tiezhong LU, quan ZOU, Mengqi WU, et al. New advances in coupled simulation of high-temperature pebble flow in pebble-bed reactors[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(12): 2522-2538 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.052
中图分类号: TL331   

参考文献

1
王茜, 李林蔚, 高彬, 等. 世界核电发展趋势走向分析[J]. 产业与科技论坛, 2022, 21 (13): 17- 19.
WANG Q , LI L W , GAO B , et al. Analysis of the development trends of global nuclear power[J]. Industrial & Science Tribune, 2022, 21 (13): 17- 19.
2
第四代核能系统国际论坛. 第四代核能系统技术路线图(2014年修订版)[R/OL]. (2014-12-29)[2025-01-06]. https://gif.china-nea.cn/1803/201412/8584.html.
Generation Ⅳ International Forum. Technology roadmap for generation Ⅳ nuclear energy systems: 2014 update[R/OL]. (2014-12-29)[2025-01-06]. https://gif.china-nea.cn/1803/201412/8584.html. (in Chinese)
3
BREY H L . FORT St. Vrain operations and future[J]. Energy, 1991, 16 (1-2): 47- 58.
4
NAKAGAWA S , TACHIBANA Y , TAKAMATSU K , et al. Performance test of HTTR[J]. Nuclear Engineering and Design, 2004, 233 (1-3): 291- 300.
5
ZIERMANN E . The AVR nuclear power facility — Progress report[J]. Nuclear Engineering and Design, 1984, 78 (2): 99- 108.
6
WU Z X , LIN D C , ZHONG D X . The design features of the HTR-10[J]. Nuclear Engineering and Design, 2002, 218 (1-3): 25- 32.
7
ZHANG Z Y , WU Z X , SUN Y L , et al. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM[J]. Nuclear Engineering and Design, 2006, 236 (5-6): 485- 490.
8
ZHANG P C , LI F G , WANG F Y . Optimization and test of ginger-shaking and harvesting device based on EDEM software[J]. Computers and Electronics in Agriculture, 2023, 213, 108257.
9
张瑶, 钟星立, 钟渝, 等. 基于StreamDEM的高炉布料首层料面研究[C]//第十一届中国钢铁年会论文集——S01. 炼铁与原料. 北京: 冶金工业出版社, 2017.
ZHANG Y, ZHONG X L, ZHONG Y, et al. Study on the first layer of blast furnace fabric based on streamDEM[C]//Proceedings of the 11th China Iron & Steel Annual Conference. Beijing, China: Metallurgical Industry Press, 2017. (in Chinese)
10
SINGH M , SHIRAZIAN S , RANADE V , et al. Challenges and opportunities in modelling wet granulation in pharmaceutical industry—A critical review[J]. Powder Technology, 2022, 403, 117380.
11
周平根, 冯春, 武杰, 等. 基于GDEM的泥石流启动过程及成灾范围反演分析[J]. 中国铁路, 2024 (1): 38- 47.
ZHOU P G , FENG C , WU J , et al. Inverse analysis of initiation process and disaster range debris flow based on GDEM[J]. China Railway, 2024 (1): 38- 47.
12
ZHAO Z J , ZHOU L , BAI L , et al. Recent advances and perspectives of CFD-DEM simulation in fluidized bed[J]. Archives of Computational Methods in Engineering, 2024, 31 (2): 871- 918.
13
JIANG S Y , TU J Y , YANG X T , et al. A review of pebble flow study for pebble bed high temperature gas-cooled reactor[J]. Experimental and Computational Multiphase Flow, 2019, 1 (3): 159- 176.
14
GUI N , JIANG S Y , YANG X T , et al. A review of recent study on the characteristics and applications of pebble flows in nuclear engineering[J]. Experimental and Computational Multiphase Flow, 2022, 4 (4): 339- 349.
15
HORABIK J , MOLENDA M . Parameters and contact models for DEM simulations of agricultural granular materials: A review[J]. Biosystems Engineering, 2016, 147, 206- 225.
16
CUNDALL P A , STRACK O D L . A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29 (1): 47- 65.
17
THORNTON C , YIN K K . Impact of elastic spheres with and without adhesion[J]. Powder Technology, 1991, 65 (1-3): 153- 166.
18
PROKOPOVICH P , PERNI S . Comparison of JKR—and DMT-based multi-asperity adhesion model: Theory and experiment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 383 (1-3): 95- 101.
19
DI RENZO A , DI MAIO F P . An improved integral non-linear model for the contact of particles in distinct element simulations[J]. Chemical Engineering Science, 2005, 60 (5): 1303- 1312.
20
BARBER J R . Elasticity[M]. 4th ed Cham: Springer, 2022.
21
MINDLIN R D , DERESIEWICZ H . Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953, 20 (3): 327- 344.
22
ZHAO X, MONTGOMERY T, ZHANG S J. Combined CFD and DEM simulations of fluid flow and heat transfer in a pebble bed reactor[C]//Proceedings of the ASME 2011 Small Modular Reactors Symposium. Washington, USA: ASME, 2012.
23
VAN LEW J T , YING A , ABDOU M . Coupling discrete element models of ceramic breeder pebble beds to thermofluid models of helium purge gas using volume-averaged Navier-stokes and the lattice-Boltzmann method[J]. Fusion Science and Technology, 2015, 68 (2): 288- 294.
24
SUN X S , SAKAI M , YAMADA Y . Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method[J]. Journal of Computational Physics, 2013, 248, 147- 176.
25
LIU X , GUI N , CUI X Y , et al. Discrete element-embedded finite element model for simulation of soft particle motion and deformation[J]. Particuology, 2022, 68, 88- 100.
26
LIU X , GUI N , YANG X T , et al. A new discrete element-embedded finite element method for transient deformation, movement and heat transfer in packed bed[J]. International Journal of Heat and Mass Transfer, 2021, 165, 120714.
27
VON DER DECKEN C B . Mechanical problems of a pebble bed reactor core[J]. Nuclear Engineering and Design, 1972, 18 (2): 323- 333.
28
VERGARI L , QUINCEY J , DE BELLEFON G M , et al. Self-lubrication of nuclear graphite in argon at high temperature[J]. Tribology International, 2023, 177, 107946.
29
XIAO J K , ZHANG L , ZHOU K C , et al. Anisotropic friction behaviour of highly oriented pyrolytic graphite[J]. Carbon, 2013, 65, 53- 62.
30
STANSFIELD O M . Friction and wear of graphite in dry helium at 25, 400, and 800℃[J]. Nuclear Applications, 1969, 6 (4): 313- 320.
31
CHEN Z L , GUI N , SUN Y F , et al. Experimental study of friction coefficient of graphite for high-temperature gas-cooled reactors[J]. Nuclear Engineering and Design, 2024, 423, 113162.
32
CHEN H , XIAO Y G , LIU Y L , et al. Effect of Young's modulus on DEM results regarding transverse mixing of particles within a rotating drum[J]. Powder Technology, 2017, 318, 507- 517.
33
QI H B , GUI N , YANG X T , et al. Effects of restitution coefficient on pebble motion in a thin pebble bed—Lagrangian analysis[J]. Annals of Nuclear Energy, 2020, 145, 107549.
34
YURATA T , GIDASPOW D , PIUMSOMBOON P , et al. The importance of parameter-dependent coefficient of restitution in discrete element method simulations[J]. Advanced Powder Technology, 2021, 32 (4): 1004- 1012.
35
LIMA R M , BRANDAO R J , SANTOS R L , et al. Analysis of methodologies for determination of DEM input parameters[J]. Brazilian Journal of Chemical Engineering, 2021, 38 (2): 287- 296.
36
WANG J , LEI M Z , YANG H , et al. Effects of coefficient of friction and coefficient of restitution on static packing characteristics of polydisperse spherical pebble bed[J]. Particuology, 2021, 57, 1- 9.
37
LI Y , GUI N , YANG X T , et al. Effect of friction on pebble flow pattern in pebble bed reactor[J]. Annals of Nuclear Energy, 2016, 94, 32- 43.
38
XI W B , WU Q G , LEI M Z , et al. Numerically investigation of the neutron irradiation swelling on the mechanical and structural evolution of beryllium pebble bed[J]. Fusion Engineering and Design, 2023, 195, 113966.
39
LEI M Z , LIU S M , WU Q G , et al. Research on purge gas flow characteristics in different pebble bed structures for fusion blanket[J]. Progress in Nuclear Energy, 2023, 155, 104488.
40
RYCROFT C H , GREST G S , LANDRY J W , et al. Analysis of granular flow in a pebble-bed nuclear reactor[J]. Physical Review E, 2006, 74 (2): 021306.
41
KHANE V , TAHA M M , MUELLER G E , et al. Discrete element method-based investigations of granular flow in a pebble bed reactor[J]. Nuclear Technology, 2017, 199 (1): 47- 66.
42
LI Y , GUI N , YANG X T , et al. Effect of wall structure on pebble stagnation behavior in pebble bed reactor[J]. Annals of Nuclear Energy, 2015, 80, 195- 202.
43
WU M Q , GUI N , YANG X T , et al. Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds[J]. Nuclear Engineering and Technology, 2021, 53 (5): 1416- 1428.
44
WU M Q , GUI N , LIU X , et al. Numerical analysis of the effects of different outlet sizes on pebble flows in HTR-10 pebble beds[J]. Nuclear Engineering and Design, 2022, 387, 111620.
45
LI B , GUI N , WU H , et al. Effects of the 3-D wall structures on the flow and mixing characteristics of pebbles in pebble beds in HTR-10[J]. Annals of Nuclear Energy, 2021, 164, 108607.
46
REGER D , MERZARI E , BALESTRA P , et al. Discrete element simulation of Pebble Bed Reactors on graphics processing units[J]. Annals of Nuclear Energy, 2023, 190, 109896.
47
LU G , THIRD J R , MüLLER C R . Discrete element models for non-spherical particle systems: From theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127, 425- 465.
48
FENG Y T . Thirty years of developments in contact modelling of non-spherical particles in DEM: A selective review[J]. Acta Mechanica Sinica, 2023, 39 (1): 722343.
49
CUI X Y , GUI N , LIU X , et al. Numerical study of blockage and arching behavior of particle with different shapes in packed bed[J]. Nuclear Engineering and Design, 2023, 405, 112225.
50
CUI X Y , LI B , GUI N , et al. Experimental study of free drainage of mixed cubic and spherical particles in a monolayer granular system[J]. Powder Technology, 2022, 409, 117826.
51
GE L , GUI N , YANG X T , et al. Effects of aspect ratio and component ratio on binary-mixed discharging pebble flow in hoppers[J]. Powder Technology, 2019, 355, 320- 332.
52
KIM D O , HWANG S P , SOHN D . DEM study of packing and connectivity of binary-sized pebbles according to their size and mixing ratios under vibration conditions[J]. Fusion Engineering and Design, 2021, 168, 112648.
53
WU M Q , GUI N , YANG X T , et al. Numerical investigation of flow characteristics and packing structure of binary-sized pebble flow in a circulating pebble bed[J]. Progress in Nuclear Energy, 2022, 150, 104312.
54
PUPESCHI S , MOSCARDINI M , GAN Y , et al. Cyclic behavior of ceramic pebble beds under mechanical loading[J]. Fusion Engineering and Design, 2018, 134, 11- 21.
55
FENG Y J , GONG B P , CHENG H , et al. Effects of bed dimension, friction coefficient and pebble size distribution on the packing structures of the pebble bed for solid tritium breeder blanket[J]. Fusion Engineering and Design, 2021, 163, 112156.
56
WANG S , HU C S , LUO K , et al. Multi-scale numerical simulation of fluidized beds: Model applicability assessment[J]. Particuology, 2023, 80, 11- 41.
57
SHARMA A , ABHISHEK , SAHA S K , et al. Thermal-hydraulic characteristics of purge gas in a rectangular packed pebble bed of a fusion reactor using DEM-CFD and porous medium analyses[J]. Fusion Engineering and Design, 2020, 160, 111848.
58
WANG J W . Continuum theory for dense gas-solid flow: A state-of-the-art review[J]. Chemical Engineering Science, 2020, 215, 115428.
59
EHLERS W . Darcy, Forchheimer, Brinkman and Richards: Classical hydromechanical equations and their significance in the light of the TPM[J]. Archive of Applied Mechanics, 2022, 92 (2): 619- 639.
60
DETMANN B . Modeling chemical reactions in porous media: A review[J]. Continuum Mechanics and Thermodynamics, 2021, 33 (6): 2279- 2300.
61
PENG Z B , DOROODCHI E , MOGHTADERI B . Heat transfer modelling in discrete element method (DEM)-based simulations of thermal processes: Theory and model development[J]. Progress in Energy and Combustion Science, 2020, 79, 100847.
62
DÍAZ-HERAS M , BELMONTE J F , ALMENDROS-IBÁÑEZ J A . Effective thermal conductivities in packed beds: Review of correlations and its influence on system performance[J]. Applied Thermal Engineering, 2020, 171, 115048.
63
JIANG S Y , TU J Y , YANG X T , et al. Multiphase flow and heat transfer in pebble bed reactor core[M]. Singapore: Springer, 2021.
64
BAGGEMANN J , SHI D , KASSELMANN S , et al. Use of SANA experimental data for validation and verification of MGT-3D and a CFD porous media model for VHTR application[J]. Nuclear Engineering and Design, 2016, 305, 678- 687.
65
NOVAK A J , PETERSON J W , ZOU L , et al. Validation of Pronghorn friction-dominated porous media thermal-hydraulics model with the SANA experiments[J]. Nuclear Engineering and Design, 2019, 350, 182- 194.
66
NOVAK A J , SCHUNERT S , CARLSEN R W , et al. Multiscale thermal-hydraulic modeling of the pebble bed fluoride-salt-cooled high-temperature reactor[J]. Annals of Nuclear Energy, 2021, 154, 107968.
67
ZOU L , HU G J , O'GRADY D , et al. Explicit modeling of pebble temperature in the porous-media model for pebble-bed reactors[J]. Progress in Nuclear Energy, 2022, 146, 104175.
68
NOURI-BORUJERDI A , TABATABAI GHOMSHEH S I . An improved porous media approach to thermal-hydraulics analysis of high-temperature gas-cooled reactors[J]. Annals of Nuclear Energy, 2015, 76, 485- 492.
69
LUO Y Y , GUI N , LIU Z Y , et al. A novel contact thermal resistance model for heat transfer in granular systems: Leveraging the force-heat analogy[J]. International Journal of Heat and Mass Transfer, 2024, 232, 125919.
70
LUO Y Y , GUI N , YANG X T , et al. Analytical generalized thermal resistance model for conductive heat transfer in pebble beds based on heat flux weighted temperature difference[J]. International Journal of Heat and Mass Transfer, 2025, 236, 126401.
71
LUO Y Y , GUI N , YANG X T , et al. An analytical model for the three-dimensional thermal resistance of particles considering internal heat conduction based on the generalized thermal resistance concept[J]. International Journal of Heat and Mass Transfer, 2025, 240, 126619.
72
张娄红, 何华, 谢一玫, 等. 不透性石墨材料导热系数影响因素的分析[J]. 中国化工装备, 2024, 26 (6): 7- 12.
ZHANG L H , HE H , XIE Y M , et al. Analysis on the influencing factors of thermal conductivity of impermeable graphite materials[J]. China Chemical Industry Equipment, 2024, 26 (6): 7- 12.
73
International Atomic Energy Agency. Heat transport and afterheat removal for gas cooled reactors under accident conditions[R]. Vienna: International Atomic Energy Agency, 2001.
74
ROUSSEAU P G , DU TOIT C G , VAN ANTWERPEN W , et al. Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility[J]. Nuclear Engineering and Design, 2014, 271, 444- 458.
75
任成, 孙艳飞, 杨星团. 高温气冷堆极端高温石墨环境下的温度测量[C]//中国核科学技术进展报告. 北京: 科学技术文献出版社, 2023: 41-50.
REN C, SUN Y F, YANG X T. Temperature measurement in the extreme graphite environment of high temperature gas-cooled reactor[C]//Progress Report on China Nuclear Science & Technology. Beijing: Science and Technology Literature Publishing House, 2023: 41-50. (in Chinese).
76
任成, 杨星团, 李聪新, 等. 高温气冷堆球床等效导热系数实验装置模拟计算[J]. 清华大学学报(自然科学版), 2015, 55 (9): 991- 997.
REN C , YANG X T , LI C X , et al. Modeling of the heat transfer characteristics of the effective thermal conductivity test facility for high temperature gas-cooled reactors[J]. Journal of Tsinghua University (Science & Technology), 2015, 55 (9): 991- 997.
77
任成, 杨星团, 李聪新, 等. 高温堆球床等效导热系数测量实验加热系统设计及可行性验证[J]. 清华大学学报(自然科学版), 2014, 54 (8): 1068- 1072.
REN C , YANG X T , LI C X , et al. Heating system design and validation for the pebble bed effective thermal conductivity experiment in a high temperature gas-cooled reactor[J]. Journal of Tsinghua University (Science & Technology), 2014, 54 (8): 1068- 1072.
78
任成, 杨星团, 李聪新, 等. 高温气冷堆球床等效导热系数实验研究进展[J]. 科学技术与工程, 2013, 13 (7): 1905- 1914.
REN C , YANG X T , LI C X , et al. Progress in pebble bed heat transfer test facility of high temperature gas-cooled reactor[J]. Science Technology and Engineering, 2013, 13 (7): 1905- 1914.
79
鄂彦志. GPU加速的氟盐冷却球床堆堆芯瞬态分析方法研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2017. E Y Z.
Research of GPU-accelerated core transient analysis method for pebble-bed fluoride salt cooled high temperature reactor[D]. Shanghai: Shanghai Institute of Applied Physics Chinese Academy of Sciences, 2017. (in Chinese)
80
CHENG G J , YU A B , ZULLI P . Evaluation of effective thermal conductivity from the structure of a packed bed[J]. Chemical Engineering Science, 1999, 54 (19): 4199- 4209.
81
GAN J Q , ZHOU Z Y , YU A B . Particle scale study of heat transfer in packed and fluidized beds of ellipsoidal particles[J]. Chemical Engineering Science, 2016, 144, 201- 215.
82
YANG R Y , ZOU R P , YU A B . Voronoi tessellation of the packing of fine uniform spheres[J]. Physical Review E, 2002, 65 (4 Pt 1): 041302.
83
OSCHMANN T , KRUGGEL-EMDEN H . A novel method for the calculation of particle heat conduction and resolved 3D wall heat transfer for the CFD/DEM approach[J]. Powder Technology, 2018, 338, 289- 303.
84
ZHOU J H , YU A B , HORIO M . Finite element modeling of the transient heat conduction between colliding particles[J]. Chemical Engineering Journal, 2008, 139 (3): 510- 516.
85
SUN J , CHEN M M . A theoretical analysis of heat transfer due to particle impact[J]. International Journal of Heat and Mass Transfer, 1988, 31 (5): 969- 975.
86
BATCHELOR G K , O'BRIEN R W . Thermal or electrical conduction through a granular material[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1977, 355 (1682): 313- 333.
87
ZHOU Z Y , YU A B , ZULLI P . A new computational method for studying heat transfer in fluid bed reactors[J]. Powder Technology, 2010, 197 (1-2): 102- 110.
88
MORRIS A B , PANNALA S , MA Z , et al. Development of soft-sphere contact models for thermal heat conduction in granular flows[J]. AIChE Journal, 2016, 62 (12): 4526- 4535.
89
WAKAO N , KAGUEI S , FUNAZKRI T . Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: Correlation of nusselt numbers[J]. Chemical Engineering Science, 1979, 34 (3): 325- 336.
90
GUNN D J . Transfer of heat or mass to particles in fixed and fluidised beds[J]. International Journal of Heat and Mass Transfer, 1978, 21 (4): 467- 476.
91
TAVASSOLI H , PETERS E A J F , KUIPERS J A M . Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles[J]. Chemical Engineering Science, 2015, 129, 42- 48.
92
SUN B , TENNETI S , SUBRAMANIAM S . Modeling average gas-solid heat transfer using particle-resolved direct numerical simulation[J]. International Journal of Heat and Mass Transfer, 2015, 86, 898- 913.
93
SINGHAL A , CLOETE S , RADL S , et al. Heat transfer to a gas from densely packed beds of monodisperse spherical particles[J]. Chemical Engineering Journal, 2017, 314, 27- 37.
94
CHEN Y , MüLLER C R . Gas-solid heat transfer in assemblies of cubes for ReV ≤ 100[J]. Chemical Engineering Science, 2020, 216, 115478.
95
CHANG Q , YANG L Q , GE W . Fluid-particle heat transfer in static assemblies: Effect of particle shape[J]. International Journal of Heat and Mass Transfer, 2021, 166, 120730.
96
WU H , GUI N , YANG X T , et al. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation[J]. International Journal of Heat and Mass Transfer, 2017, 110, 393- 405.
97
FORGBER T , RADL S . A novel approach to calculate radiative thermal exchange in coupled particle simulations[J]. Powder Technology, 2018, 323, 24- 44.
98
LIU L H . Multiple size group analysis for transient radiative heating of particle polydispersions[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 76 (2): 225- 234.
99
SHI Y , SUN W J , LI L X , et al. An improved unified gas kinetic particle method for radiative transfer equations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 261, 107428.
100
CHENG G J , YU A B . Particle scale evaluation of the effective thermal conductivity from the structure of a packed bed: Radiation heat transfer[J]. Industrial & Engineering Chemistry Research, 2013, 52 (34): 12202- 12211.
101
WU H , GUI N , YANG X T , et al. Effect of scale on the modeling of radiation heat transfer in packed pebble beds[J]. International Journal of Heat and Mass Transfer, 2016, 101, 562- 569.
102
WU Y Y , REN C , LI R , et al. Measurement on effective thermal diffusivity and conductivity of pebble bed under vacuum condition in High Temperature Gas-cooled Reactor[J]. Progress in Nuclear Energy, 2018, 106, 195- 203.
103
WU H , GUI N , YANG X T , et al. A new uniform continuum modeling of conductive and radiative heat transfer in nuclear pebble bed[J]. Journal of Heat Transfer, 2019, 141 (8): 082001.
104
WU H , GUI N , YANG X T , et al. A matrix model of particle-scale radiative heat transfer in structured and randomly packed pebble bed[J]. International Journal of Thermal Sciences, 2020, 153, 106334.
105
WU H , GUI N , YANG X T , et al. Particle-scale investigation of thermal radiation in nuclear packed pebble beds[J]. Journal of Heat Transfer, 2018, 140 (9): 092002.
106
LI B , GUI N , WU H , et al. Sub-cell radiation-conduction (SCRC) model in densely packed beds of mono-sized pebbles for HTGR under vacuum condition[J]. International Journal of Heat and Mass Transfer, 2022, 199, 123445.
107
吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63 (8): 1213- 1218.
WU H , NIU F L . Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed[J]. Journal of Tsinghua University (Science & Technology), 2023, 63 (8): 1213- 1218.
108
谢宛均. 基于集成学习高温球床热辐射规律研究[D]. 北京: 华北电力大学(北京), 2024.
XIE W J. Ensemble learning modelling of decay heat removal in high temperature gas-cooled reactor[D]. Beijing: North China Electric Power University, 2024. (in Chinese)
109
Tanaka S . Exact view-factor analysis for radiation from a sphere to another sphere linked with a coaxial cylinder[J]. Journal of Maritime Sciences, 2008, 5, 85- 92.
110
WALKER T. The use of primitives in the calculation of radiative view factors[D]. Sydney: University of Sydney, 2013.
111
WU H , GUI N , YANG X T , et al. An approximation function model for solving effective radiative heat transfer in packed bed[J]. Annals of Nuclear Energy, 2020, 135, 107000.
112
JOHNSON E , BAKER D , TARI I . Development of view factor correlations for modeling thermal radiation in solid particle solar receivers using CFD-DEM[J]. AIP Conference Proceedings, 2019, 2126 (1): 030028.
113
VAN ANTWERPEN W , ROUSSEAU P G , DU TOIT C G . Multi-sphere Unit Cell model to calculate the effective thermal conductivity in packed pebble beds of mono-sized spheres[J]. Nuclear Engineering and Design, 2012, 247, 183- 201.
114
贝蒂尔·施密特, 豪尔赫·冈萨雷斯-多明格斯, 克里斯蒂安·洪特, 等. 并行程序设计: 概念与实践[M]. 北京: 机械工业出版社, 2020.
SCHMIDT B , GONZALEZ-DOMINGUEZ J , HUNDT C , et al. Parallel programming: Concepts and practice[M]. Beijing: China Machine Press, 2020.
115
STONE J E , GOHARA D , SHI G C . OpenCL: A parallel programming standard for heterogeneous computing systems[J]. Computing in Science & Engineering, 2010, 12 (3): 66- 73.
116
NVIDIA. CUDA C++ programming guide[EB/OL]. (2024-11-20)[2025-01-06]. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
117
FUKUDA D , MOHAMMADNEJAD M , LIU H Y , et al. Development of a 3D hybrid finite-discrete element simulator based on GPGPU-parallelized computation for modelling rock fracturing under quasi-static and dynamic loading conditions[J]. Rock Mechanics and Rock Engineering, 2020, 53 (3): 1079- 1112.
118
ZHOU Q , XU W J , LIU G Y . A contact detection algorithm for triangle boundary in GPU-based DEM and its application in a large-scale landslide[J]. Computers and Geotechnics, 2021, 138, 104371.
119
WANG S Q , ZHANG Q , JI S Y . GPU-based parallel algorithm for super-quadric discrete element method and its applications for non-spherical granular flows[J]. Advances in Engineering Software, 2021, 151, 102931.
120
GOVENDER N , CLEARY P W , KIANI-OSHTORJANI M , et al. The effect of particle shape on the packed bed effective thermal conductivity based on DEM with polyhedral particles on the GPU[J]. Chemical Engineering Science, 2020, 219, 115584.
121
DI RENZO A , DI MAIO F P . Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59 (3): 525- 541.
122
MITTAL A , MANGADODDY N , BANERJEE R . Development of three-dimensional GPU DEM code-benchmarking, validation, and application in mineral processing[J]. Computational Particle Mechanics, 2023, 10 (6): 1533- 1556.
123
YU J H , WANG S , LUO K , et al. GPU-accelerated discrete element simulation of granular and gas-solid flows[J]. Powder Technology, 2024, 437, 119475.
124
ZOU Q , GUI N , YANG X T , et al. A GPU-based DEM model for the pebble flow study in packed bed: Simulation scheme and validation[J]. Powder Technology, 2023, 422, 118441.
125
YE F P , WHEELER C , CHEN B , et al. Calibration and verification of DEM parameters for dynamic particle flow conditions using a backpropagation neural network[J]. Advanced Powder Technology, 2019, 30 (2): 292- 301.
126
BENVENUTI L , KLOSS C , PIRKER S . Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments[J]. Powder Technology, 2016, 291, 456- 465.
127
BENVENUTI L, KLOSS C, PIRKER S. Characterization of DEM particles by means of artificial neural networks and macroscopic experiments[C]//Proceedings of the 16th International Conference on Engineering Applications of Neural Networks. Rhodes Island, Greece: ACM, 2015: 4.
128
KUMAR R , PATEL C M , JANA A K , et al. Prediction of hopper discharge rate using combined discrete element method and artificial neural network[J]. Advanced Powder Technology, 2018, 29 (11): 2822- 2834.
129
HE L , TAFTI D K . A supervised machine learning approach for predicting variable drag forces on spherical particles in suspension[J]. Powder Technology, 2019, 345, 379- 389.
130
CUI Y F , FANG J , LI Y , et al. Assessing effectiveness of a dual-barrier system for mitigating granular flow hazards through DEM-DNN framework[J]. Engineering Geology, 2022, 306, 106742.
131
LIU Y J , MARQUARDT J , PENG S F , et al. Neural network prediction of residence time distribution for quasi-2D pebble flow[J]. Chemical Engineering Science, 2022, 250, 117363.
132
CUI X Y , GUI N , YANG X T , et al. Analysis of particle shape effect on the discharging of non-spherical particles in HTR-10 reactor core[J]. Nuclear Engineering and Design, 2021, 371, 110934.
133
ZHANG P , YU Y Z . A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 382, 113858.
134
YAO Z W , HUANG Q P , JI Z , et al. Deep learning-based prediction of piled-up status and payload distribution of bulk material[J]. Automation in Construction, 2021, 121, 103424.
135
LIANG Z Y , NIE Z H , AN A J , et al. A particle shape extraction and evaluation method using a deep convolutional neural network and digital image processing[J]. Powder Technology, 2019, 353, 156- 170.
136
LIAO Z H , YANG Y Z , SUN C F , et al. Image-based prediction of granular flow behaviors in a wedge-shaped hopper by combing DEM and deep learning methods[J]. Powder Technology, 2021, 383, 159- 166.
137
HESSE R , KRULL F , ANTONYUK S . Prediction of random packing density and flowability for non-spherical particles by deep convolutional neural networks and Discrete Element Method simulations[J]. Powder Technology, 2021, 393, 559- 581.
138
HONG J , LIU J . Rapid estimation of permeability from digital rock using 3D convolutional neural network[J]. Computational Geosciences, 2020, 24 (4): 1523- 1539.
139
蔡杨, 苏明旭, 蔡小舒. 基于卷积神经网络的混合颗粒分类法研究[J]. 光学学报, 2019, 39 (7): 0712002.
CAI Y , SU M X , CAI X S . Method for mixed-particle classification based on convolutional neural network[J]. Acta Optica Sinica, 2019, 39 (7): 0712002.
140
NEWBY J M , SCHAEFER A M , LEE P T , et al. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (36): 9026- 9031.
141
WU M Q , LIU X , GUI N , et al. Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets[J]. Nuclear Engineering and Technology, 2023, 55 (1): 339- 352.
142
WU M Q , BIN L , GUI N , et al. Deep learning-based prediction of the remaining time and future distribution of pebble flow from real-scene images[J]. Chemical Engineering Science, 2024, 283, 119425.
143
TAUSENDSCHÖN J , RADL S . Deep neural network-based heat radiation modelling between particles and between walls and particles[J]. International Journal of Heat and Mass Transfer, 2021, 177, 121557.
144
KIANIMOQADAM A , LAPP J . Calculating the view factor of randomly dispersed multi-sized particles using hybrid GRU-LSTM recurrent neural networks regression[J]. International Journal of Heat and Mass Transfer, 2023, 202, 123756.
145
ZOU Q , GUI N , YANG X T , et al. Comparative study on the numerical methods for view factor computation for packed pebble beds: Back propagation neural network methods versus Monte Carlo methods[J]. Journal of Heat Transfer, 2021, 143 (8): 083301.

版权

版权所有,未经授权,不得转载。
PDF(12407 KB)

审稿意见

Accesses

Citation

Detail

段落导航
相关文章

/