化学反应器网络法在燃烧室数值模拟中的应用

耿俊杰, 帅佳玮, 雷福林, 祁海鹰

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 1887-1896.

PDF(6079 KB)
PDF(6079 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 1887-1896. DOI: 10.16511/j.cnki.qhdxxb.2025.22.011
核能与新能源工程

化学反应器网络法在燃烧室数值模拟中的应用

作者信息 +

Application of the chemical reactor network method in the numerical simulation of combustors

Author information +
文章历史 +

摘要

为了探究计算流体力学耦合化学反应器网络的燃烧室数值模拟方法, 提高对燃气轮机燃烧室NOx排放的预测精度, 该文基于已有全参数全尺寸燃烧室流动燃烧过程的数值模拟结果, 研究了化学反应器网络自动分区/求解方法及其程序化、燃烧空间分区策略和通用准则。结果表明:在不同负荷、不同燃烧模式和变结构条件下, 该文所提出的数值模拟方法对NOx排放的预测误差不大于6.4%, 远低于现有商用软件采用后验模型预测NOx的误差, 可为燃烧室研发提供更有力的工具。

Abstract

Objective: This paper aims to advance numerical simulation methodologies for combustion by integrating computational fluid dynamics (CFD) with chemical reactor networks (CRNs). The primary goal is to significantly enhance the predictive accuracy of NOx emissions in gas turbine combustors. Building on existing numerical simulations of full-parameter and full-scale combustion processes within the combustor, this study provides a method for improved NOx emission predictions. Methods: The study investigates an automated partitioning/solving method and its programmability within the CRN framework. It evaluates strategies for partitioning the combustion space and establishes general criteria. The combustion reaction zone is a key area for the extensive generation of NOx. Among the calculations, the division of the recirculation zone is relatively straightforward, with "axial velocity va=0" serving as the partition criterion. The envelope area of its isosurface defines the recirculation zone. In addition to the recirculation zone downstream of the central nozzle, a smaller recirculation zone exists at the rear of the Venturi structure at the outlet of the annular zone. However, the partition criteria for the flame front and main flame zones are more complex. This study finds that using the "burnout rate η" and the "average equivalence ratio φav before combustion" as criteria is the most reasonable approach. The combustion zone is subdivided in the axial direction using the η criterion. Specifically, the zone is divided into two sections along the axial direction, with partition boundaries corresponding to η=90% and η=99%, respectively. The φ criterion is then applied to partition the cross-section, and each zone is further divided into two sub-zones. The partition boundary φ is the average equivalence ratio (φav) of each combustion zone. Results: The findings indicate that under varying loads, combustion modes, and structural conditions, the prediction error for NOx emissions does not exceed 6.4%. This error is considerably lower than those associated with NOx predictions made using post-processing models in current commercial softwares. Compared with the commonly used T partition criterion, the η-φ criterion requires fewer reactors and offers higher accuracy. Conclusions: This paper develops an automatic CRN partitioning/solving method and utilizes the XML data format to standardize the storage of input and output data. The method demonstrates good versatility across different combustion chamber types and operating conditions. In addition, the paper proposes a CRN partition strategy and general criterion for gas turbine combustors, specifically the η-φ partition criterion. This criterion reflects the structural characteristics of the combustor, aligns with the principles of basic combustion theory, and has a clear physical meaning. The CRN method based on the η-φ partition criterion is applicable to multiple load conditions, different combustion operating modes, and combustion chamber variations in the local structure, significantly improving the accuracy of NOx emission predictions. The method can replace the post-processing calculation model for NOx emissions used in current commercial software, greatly enhancing both calculation efficiency and accuracy. The developed numerical simulation approach provides a more robust tool for research and development related to combustors.

关键词

燃烧室数值模拟 / 化学反应器网络 / NOx排放预测 / 自动分区/求解方法 / 分区策略 / 分区通用准则

Key words

numerical simulation of combustor / chemical reactor network / NOx emission prediction / automatic partitioning/solving method / partitioning strategy / partitioning general criterion

引用本文

导出引用
耿俊杰, 帅佳玮, 雷福林, . 化学反应器网络法在燃烧室数值模拟中的应用[J]. 清华大学学报(自然科学版). 2025, 65(10): 1887-1896 https://doi.org/10.16511/j.cnki.qhdxxb.2025.22.011
Junjie GENG, Jiawei SHUAI, Fulin LEI, et al. Application of the chemical reactor network method in the numerical simulation of combustors[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(10): 1887-1896 https://doi.org/10.16511/j.cnki.qhdxxb.2025.22.011
中图分类号: TK472   

参考文献

1
蒋洪德. 重型燃气轮机的现状和发展趋势[J]. 热力透平, 2012, 41(2): 83- 88.
JIANG H D. Development of the heavy-duty gas turbine[J]. Thermal Turbine, 2012, 41(2): 83- 88.
2
蒋洪德, 任静, 李雪英, 等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34(29): 5096- 5102.
JIANG H D, REN J, LI X Y, et al. Status and development trend of the heavy duty gas turbine[J]. Proceedings of the CSEE, 2014, 34(29): 5096- 5102.
3
母滨. 贫预混燃烧室NOx排放的化学反应器网络模型数值研究[D]. 北京: 中国科学院工程热物理研究所, 2019.
MU B. Numerical investigation of NOx emission of lean premixed combustor using chemical reactor network model[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2019. (in Chinese)
4
İLBAŞM M, KARYEYEN S. Modelling of combustion performances and emission characteristics of coal gases in a model gas turbine combustor[J]. International Journal of Energy Research, 2014, 38(9): 1171- 1180.
5
KHODAYARI H, OMMI F, SABOOHI Z. A review on the applications of the chemical reactor network approach on the prediction of pollutant emissions[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(4): 551- 570.
6
耿俊杰, 田园, 孙逸凡, 等. 基于化学反应器网络方法的燃气轮机燃烧室NOx排放研究[J]. 中国电机工程学报, 2023, 43(12): 4657- 4668.
GENG J J, TIAN Y, SUN Y F, et al. Investigation on NOx emission characteristics of gas turbine combustor based on chemical reactor network method[J]. Proceedings of the CSEE, 2023, 43(12): 4657- 4668.
7
杨小龙, 崔玉峰, 徐纲, 等. 燃气轮机燃烧室化学反应器网络模型研究[J]. 工程热物理学报, 2009, 30(9): 1585- 1588.
YANG X L, CUI Y F, XU G, et al. Chemical reactor network approach for a gas turbine combustor[J]. Journal of Engineering Thermophysics, 2009, 30(9): 1585- 1588.
8
高桥东, 雷福林, 张哲巅. 预测NOx排放的化学反应器网络自动生成方法[J]. 清华大学学报(自然科学版), 2023, 63(4): 612- 622.
GAO Q D, LEI F L, ZHANG Z D. Automatic generation method of a chemical reactor network for predicting NOx emissions[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(4): 612- 622.
9
FALCITELLI M, TOGNOTTI L, PASINI S. An algorithm for extracting chemical reactor network models from CFD simulation of industrial combustion systems[J]. Combustion Science and Technology, 2002, 174(11-12): 27- 42.
10
SAMPAT R. Automatic generation of chemical reactor networks for combustion simulations[D]. Delft: Delft University of Technology, 2018.
11
MONAGHAN R F D, TAHIR R, BOURQUE G, et al. Detailed emissions prediction for a turbulent swirling nonpremixed flame[J]. Energy & Fuels, 2014, 28(2): 1470- 1488.
12
KHODAYARI H, OMMI F, SABOOHI Z. Multi-objective optimization of a lean premixed laboratory combustor through CFD-CRN approach[J]. Thermal Science and Engineering Progress, 2021, 25, 101014.
13
HAO N T. A chemical reactor network for oxides of nitrogen emission prediction in gas turbine combustor[J]. Journal of Thermal Science, 2014, 23(3): 279- 284.
14
LEE D, PARK J, JIN J, et al. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor[J]. Journal of Mechanical Science and Technology, 2011, 25(7): 1871- 1878.
15
RUSSO C, MORI G, ANISIMOV V V, et al. Micro gas turbine combustor emissions evaluation using the chemical reactor modelling approach[C]//Turbo Expo: Power for Land, Sea, and Air. Montreal, Canada: ASME, 2007: 531-542.
16
INNOCENTI A, ANDREINI A, BERTINI D, et al. Turbulent flow-field effects in a hybrid CFD-CRN model for the prediction of NOx and CO emissions in aero-engine combustors[J]. Fuel, 2018, 215, 853- 864.
17
FALCITELLI M, PASINI S, TOGNOTTI L. Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach[J]. Computers & Chemical Engineering, 2002, 26(9): 1171- 1183.
18
FICHET V, KANNICHE M, PLION P, et al. A reactor network model for predicting NOx emissions in gas turbines[J]. Fuel, 2010, 89(9): 2202- 2210.
19
KANNICHE M. Coupling CFD with chemical reactor network for advanced NOx prediction in gas turbine[J]. Clean Technologies and Environmental Policy, 2010, 12(6): 661- 670.
20
LEBEDEV A B, SECUNDOV A N, STARIK A M, et al. Modeling study of gas-turbine combustor emission[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2941- 2947.
21
ZHOU B, BRACKMANN C, WANG Z K, et al. Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: Scalar distributions and correlations[J]. Combustion and Flame, 2017, 175, 220- 236.
22
GENG J J, QI H Y, LI J L, et al. Local surrogate modeling for spatial emulation of gas-turbine combustion via similarity-based sample processing[J]. Journal of Engineering for Gas Turbines and Power, 2024, 146(10): 101019.

基金

国家科技重大专项(Y2019-I-0022-0021)

版权

版权所有,未经授权,不得转载。
PDF(6079 KB)

审稿意见

Accesses

Citation

Detail

段落导航
相关文章

/