都市圈多模式交通网络建模及集成韧性测度

赵成勇, 马飞, 崔睿颖, 任玮

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 1930-1944.

PDF(7581 KB)
PDF(7581 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 1930-1944. DOI: 10.16511/j.cnki.qhdxxb.2025.27.021
交通运输

都市圈多模式交通网络建模及集成韧性测度

作者信息 +

Metropolitan area multimodal transportation network modeling and integrated resilience measurement

Author information +
文章历史 +

摘要

培育发展现代化都市圈需要推动构建一体化交通网络体系,如何构建高效、稳定的综合交通网络推动现代化都市圈发展值得重点关注。该文以都市圈多模式交通网络(metropolitan area multi-modal transportation network, MA-MTN)为研究对象,基于复杂网络方法建立了不同类型交通网络构建流程,定义了MA-MTN运行中的负载重分配模型。然后基于集成化视角构建了MA-MTN集成韧性指标。最后,以中国西安市的都市圈为研究对象,通过情景模拟方法分析了MA-MTN中不同模式交通子网的敏感性水平;分别对MA-MTN受攻击时的网络性能损失阶段、实施恢复策略的恢复阶段以及网络进行动态恢复阶段进行模拟分析。研究结果表明,当MA-MTN遭受攻击时,在网络节点失效比例达到60%前,网络性能损失的变化程度最高;需对MA-MTN节点容量调节参数β进行动态调整,在网络日常运行中β宜设置为0.2,在面临极端天气或节假日期间β宜调整为0.7;在调整网络节点间的客流转移过程中重点考虑运输效率因素有助于全面提升MA-MTN的韧性水平;基于节点负载容量水平的恢复策略对MA-MTN具有优异的集成韧性水平提升效果。该研究通过多维集成化视角测度交通网络的韧性水平,对推动建设高效、稳定的都市圈综合交通网络具有重要意义。

Abstract

Objective: The development of modern urban agglomerations requires cultivating integrated transportation networks, advancing transportation integration, and building resilient, comprehensive three-dimensional systems. Building a highly efficient and stable transportation network is fundamental to promoting the growth of modern metropolitan areas. Methods: This paper focuses on the metropolitan area multimodal transportation network (MA-MTN) and uses complex network methodologies to model different transportation network construction processes. By applying a load capacity model, it defines the load and capacity levels of the MA-MTN and develops a load redistribution model to facilitate network operations; then, different dimensions of network resilience evaluation indicators were developed, focusing on three levels: overall network, network structure, and network function. From an integrated perspective, a comprehensive resilience indicator for multimodal transportation networks in urban agglomerations was established. The Xi'an metropolitan area was selected as the research subject to conduct simulation analyses of the multimodal transportation network's integrated resilience. The sensitivity levels of different traffic subnetworks in the multimodal transportation network of the metropolitan area were assessed through scenario simulation methods. Simulations examined the performance loss stage, the recovery stage following the implementation of recovery strategies, and the dynamic recovery stage during network failures caused by attacks on the multimodal transportation network. The effectiveness of strategies aimed at improving the integrated resilience of the metropolitan multimodal transportation network was also compared and analyzed. Results: The research results indicated that different transportation subnets play distinct roles in the multimodal transportation network of urban agglomerations. When MA-MTN is attacked, the sharpest decline in network performance occurs before the failure rate of network nodes reaches 60%. The node capacity adjustment parameter β in MA-MTN needs to be dynamically calibrated, with a value of 0.2 recommended for daily operations and 0.7 during extreme weather events or holiday peaks. Enhancing the resilience of urban multimodal transportation networks requires prioritizing transportation efficiency factors in the transfer of passenger flow transfer between nodes; this approach improves the comprehensiveness of the network resilience. Recovery strategies based on node load capacity levels are the most effective in improving the integrated resilience level of these networks. Such strategies enhance resistance to attacks and significantly improve recovery capabilities during cascading failures, ensuring robust network performance even under dynamic recovery conditions. Conclusions: This paper measures the integrated resilience level of transportation networks against external disturbances using a multidimensional integrated perspective; moreover, it identifies effective strategies to improve the structural and functional resilience of multimodal transportation networks in urban areas. Based on the research results, this study emphasizes the importance of determining critical thresholds for network node failures. It recommends dynamically adjusting the node capacity parameter β according to the operational conditions of the MA-MTN and external factors. Furthermore, it advocates optimizing the transfer process of node passenger flow load by prioritizing transportation efficiency during network operations. The study also highlights the significance of prioritizing node load capacity and developing effective recovery strategies based on the comprehensive importance of nodes. These approaches are crucial for promoting the construction of efficient, stable, and multimodal transportation networks in urban areas.

关键词

交通运输工程 / 集成韧性测度 / 复杂网络 / 都市圈多模式交通网络 / 交通韧性

Key words

transportation engineering / integrated resilience measurement / complex networks / metropolitan area multimodal transportation network / traffic resilience

引用本文

导出引用
赵成勇, 马飞, 崔睿颖, . 都市圈多模式交通网络建模及集成韧性测度[J]. 清华大学学报(自然科学版). 2025, 65(10): 1930-1944 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.021
Chengyong ZHAO, Fei MA, Ruiying CUI, et al. Metropolitan area multimodal transportation network modeling and integrated resilience measurement[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(10): 1930-1944 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.021
中图分类号: U125   

参考文献

1
李妍. 东京都市圈轨道交通与城市协调发展分析[J]. 铁道建筑, 2022, 62 (2): 167- 171.
LI Y . Analysis on coordinated development of rail transit and cities in Tokyo metropolitan area[J]. Railway Engineering, 2022, 62 (2): 167- 171.
2
韩笑, 赵金元. "十四五"时期都市圈城乡经济一体化: 动力机制及创新路径[J]. 经济体制改革, 2022 (3): 55- 61.
HAN X , ZHAO J Y . Urban-rural economic integration in metropolitan areas during the "14th five-year plan" period: Dynamic mechanism and innovative path[J]. Reform of Economic System, 2022 (3): 55- 61.
3
代合治, 江歌. 中国城市群发展的空间分异研究[J]. 安徽师范大学学报(自然科学版), 2022, 45 (5): 469- 475.
DAI H Z , JIANG G . Spatial differentiation of urban agglomeration development in China[J]. Journal of Anhui Normal University (Natural Science), 2022, 45 (5): 469- 475.
4
高云嵩, 张沛, 张中华. 都市圈视域下区域生活空间理论框架构建及未来趋势[J]. 西北大学学报(自然科学版), 2023, 53 (5): 684- 695.
GAO Y S , ZHANG P , ZHANG Z H . Research on the theoretical framework and futuretrends of regional living space in the perspective of metropolitan area[J]. Journal of Northwest University(Natural Science Edition), 2023, 53 (5): 684- 695.
5
康伟. 都市圈建设背景下的城市综合交通体系研究[J]. 河南科技, 2021, 40 (28): 94- 96.
KANG W . Research on urban comprehensive transportation system under the background of metropolitan area construction[J]. Journal of Henan Science and Technology, 2021, 40 (28): 94- 96.
6
PAN S Z , YAN H , HE J , et al. Vulnerability and resilience of transportation systems: A recent literature review[J]. Physica A: Statistical Mechanics and its Applications, 2021, 581, 126235.
7
TANG J Q , HEINIMANN H , HAN K , et al. Evaluating resilience in urban transportation systems for sustainability: A systems-based Bayesian network model[J]. Transportation Research Part C: Emerging Technologies, 2020, 121, 102840.
8
MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]//Proceedings of the 2006 Winter Simulation Conference. Monterey, CA, USA: IEEE, 2006: 1398-1405.
9
KURTH M , KOZLOWSKI W , GANIN A , et al. Lack of resilience in transportation networks: Economic implications[J]. Transportation Research Part D: Transport and Environment, 2020, 86, 102419.
10
JANI AC'U M . Reprint of "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event"[J]. Transportation Research Part A: Policy and Practice, 2015, 81, 77- 92.
11
ZHOU L , CHEN Z H . Measuring the performance of airport resilience to severe weather events[J]. Transportation Research Part D: Transport and Environment, 2020, 83, 102362.
12
LU Q C . Modeling network resilience of rail transit under operational incidents[J]. Transportation Research Part A: Policy and Practice, 2018, 117, 227- 237.
13
ZHANG D M , DU F , HUANG H W , et al. Resiliency assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106, 230- 243.
14
DU Z Y , TANG J J , QI Y , et al. Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city-China[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 539, 122926.
15
VOLTES-DORTA A , RODRíGUEZ-DéNIZ H , SUAU-SANCHEZ P . Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports[J]. Transportation Research Part A: Policy and Practice, 2017, 96, 119- 145.
16
郭九霞, 杨宗鑫, 夏正洪, 等. 新冠疫情前后机场加权网络抗毁性分析[J]. 中国安全科学学报, 2022, 32 (8): 91- 97.
GUO J X , YANG Z X , XIA Z H , et al. Invulnerability analysis for airport weighted networks before and after COVID-19[J]. China Safety Science Journal, 2022, 32 (8): 91- 97.
17
ZHANG L , WEN H Y , LU J , et al. Vulnerability assessment and visualization of large-scale bus transit network under route service disruption[J]. Transportation Research Part D: Transport and Environment, 2020, 88, 102570.
18
JIAO J J , ZHANG F N , LIU J . A spatiotemporal analysis of the robustness of high-speed rail network in China[J]. Transportation Research Part D: Transport and Environment, 2020, 89, 102584.
19
HONG L , YAN Y Z , OUYANG M , et al. Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems[J]. Reliability Engineering & System Safety, 2017, 158, 58- 72.
20
马飞, 赵成勇, 孙启鹏, 等. 重大公共卫生灾害主动限流背景下城市轨道交通网络集成韧性[J]. 交通运输工程学报, 2023, 23 (1): 208- 221.
MA F , ZHAO C Y , SUN Q P , et al. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23 (1): 208- 221.
21
路庆昌, 崔欣, 徐标, 等. 公交接驳场景下轨道交通网络脆弱性研究[J]. 中国安全科学学报, 2021, 31 (8): 141- 146.
LU Q C , CUI X , XU B , et al. Vulnerability research of rail transit network under bus connection scenarios[J]. China Safety Science Journal, 2021, 31 (8): 141- 146.
22
ZHANG J H , WANG S L , WANG X Y . Comparison analysis on vulnerability of metro networks based on complex network[J]. Physica A: Statistical Mechanics and its Applications, 2018, 496, 72- 78.
23
WANG Y Y , TIAN C W . Measure vulnerability of metro network under cascading failure[J]. IEEE Access, 2021, 9, 683- 692.
24
马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析——以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62 (7): 1228- 1235.
MA S H , WU Y J , CHEN X F . Structural resilience of multimodal transportation networks in urban agglomerations: A case study of the Guanzhong Plain urban agglomeration network[J]. Journal of Tsinghua University (Science and Technology), 2022, 62 (7): 1228- 1235.
25
彭翀, 陈思宇, 王宝强. 中断模拟下城市群网络结构韧性研究——以长江中游城市群客运网络为例[J]. 经济地理, 2019, 39 (8): 68- 76.
PENG C , CHEN S Y , WANG B Q . Analyzing city network's structural resilience under disruption scenarios: A case study of passenger transport network in the middle reaches of Yangtze River[J]. Economic Geography, 2019, 39 (8): 68- 76.
26
李成兵, 张帅, 杨志成, 等. 蓄意攻击下城市群客运交通网络级联抗毁性仿真[J]. 交通运输系统工程与信息, 2019, 19 (2): 14- 21.
LI C B , ZHANG S , YANG Z C , et al. Invulnerability simulation in urban agglomeration passenger traffic network under targeted attacks[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (2): 14- 21.
27
段佳勇, 郑宏达. 基于节点重要度的复杂网络脆弱性分析方法[J]. 控制工程, 2020, 27 (4): 692- 696.
DUAN J Y , ZHENG H D . Vulnerability analysis method for complex networks based on node importance[J]. Control Engineering of China, 2020, 27 (4): 692- 696.
28
MA F , SHI W J , YUEN K F , et al. Exploring the robustness of public transportation for sustainable cities: A double-layered network perspective[J]. Journal of Cleaner Production, 2020, 265, 121747.
29
王学光, 张爱新, 窦炳琳. 复杂网络上的非线性负载容量模型[J]. 计算机科学, 2021, 48 (6): 282- 287.
WANG X G , ZHANG A X , DOU B L . Non-linear load capacity model of complex networks[J]. Computer Science, 2021, 48 (6): 282- 287.
30
高洁, 马杰, 杨丽新. 基于非线性容量负载模型下电网的级联故障分析[J]. 科学技术与工程, 2022, 22 (9): 3601- 3606.
GAO J , MA J , YANG L X . Cascading failure analysis of power grid based on nonlinear capacity load model[J]. Science Technology and Engineering, 2022, 22 (9): 3601- 3606.

基金

国家自然科学基金面上项目(72104034)
陕西省教育厅2021年度重点科学研究计划项目(21JP007)
陕西省交通运输厅交通科技项目(23-12K)

版权

版权所有,未经授权,不得转载。
PDF(7581 KB)

审稿意见

Accesses

Citation

Detail

段落导航
相关文章

/