基于浣熊优化算法的连续停泵工况下泵阀联合优化调控研究

伊北, 刘小莲, 王雪妮, 张雷克, 田雨, 郭维维

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 1868-1879.

PDF(4660 KB)
PDF(4660 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 1868-1879. DOI: 10.16511/j.cnki.qhdxxb.2025.27.030
水利水电工程

基于浣熊优化算法的连续停泵工况下泵阀联合优化调控研究

作者信息 +

Study on joint optimal operation of pumps and valves under phased shutdown of pumps based on the coati optimization algorithm

Author information +
文章历史 +

摘要

针对加压输水与重力输水相结合的长距离复杂输水工程利用单阀调控难以改善全线水锤控制效果的问题,该文建立了耦合水力计算的泵阀联合优化调控模型,应用了基于非支配排序的多目标浣熊优化算法(NSCOA)求解,并通过改进理想点法(IIPBD)对计算生成的Pareto前沿解进行方案优选。以山东省某加压输水与重力输水相结合的输水工程为例,分别采用NSCOA、NSGA-Ⅱ、NSSA对其泵阀联合优化调控模型进行求解,通过超体积指标(HV)、间距指标(SP)进行评价,验证了NSCOA在泵阀联合调控问题中寻优性能的优越性。结果表明,利用IIPBD优选的方案比现状方案的最大水锤压力降低了15.28 m,最小水锤压力降低了0.03 m,高位水池水位波动幅度减小了70.37%。研究成果可为解决实际工程中的泵阀联合优化调控提供参考。

Abstract

Objective: For long-distance and complex water conveyance systems that combine pressurized water and gravity flow, achieving effective water hammer control through individual valve regulation is challenging. It is crucial to implement joint pump-and-valve operation to ensure the system's overall safety performance. Existing research often overlooks water level fluctuations in storage facilities and fails to evaluate the effects of coordinated pump-and-valve operations on the overall system. Furthermore, the interdependence of parameters in multivariable pump-and-valve control creates difficulties in multi-objective optimization and decision-making. Methods: The joint optimal operation model for pumps and valves is developed based on hydraulic calculations, considering three key objectives: minimizing the maximum water hammer pressure, maximizing the minimum water hammer pressure, and minimizing water level fluctuations in elevated pools. The model is solved using the non-dominated sorting-based multi-objective coati optimization algorithm (NSCOA), while optimization schemes are realized through improved ideal-point-based decision (IIPBD) derived from the computationally generated Pareto front. A long-distance water transmission project serves as the research object, where NSCOA, NSGA-Ⅱ, and NSSA are used to solve its joint optimal pump-and-valve operation. Reasonable parameter settings for NSCOA are determined to solve the model. The optimal solution is obtained using IIPBD, validating the superiority of the NSCOA-IIPBD optimization decision-making method. Results: The performance of NSCOA, NSGA-Ⅱ, and NSSA was evaluated using hypervolume (HV) and spacing (SP) indices across ZDT1 to ZDT4 and ZDT6 test functions, confirming the superiority of NSCOA. At the same time, the parameters of NSCOA in the calculation of joint optimal operation of pumps and valves are reasonably set: the population number is 50, the size of external archives is 50, and the number of iterations is 75. Comparisons with NSGA-Ⅱ and NSSA further demonstrated the effectiveness of NSCOA in solving this problem. On this basis, the Pareto frontier calculated by NSCOA is determined based on IIPBD. Compared with the current scheme, the optimal scheme shortened the fast-closing time, extended the slow-closing time of the valve after the pump, and coordinated pump time intervals with the terminal valve response. These adjustments resulted in a 14.40% reduction in maximum pressure and a 70.37% decrease in water level fluctuation in the elevated pool. These findings confirm the reliability of NSCOA for optimizing the joint optimal operation model of pumps and valves under phased shutdown of pumps. Conclusions: The widely distributed Pareto frontier solution set can be obtained by solving the joint optimal operation model of pumps and valves with NSCOA. Using IIPBD, an optimal scheme with significantly lower pressure and water level fluctuations compared to the current scheme was achieved. The NSCOA-IIPBD method provides a more efficient and feasible scheme for the multi-objective solution and decision-making of the joint optimal operation of pumps and valves in long-distance complex water transmission systems.

关键词

泵阀联合调控 / 长距离输水 / 水锤 / 浣熊优化算法

Key words

joint optimal operation of pumps and valves / long-distance water conveyance projects / water hammer / coati optimization algorithm

引用本文

导出引用
伊北, 刘小莲, 王雪妮, . 基于浣熊优化算法的连续停泵工况下泵阀联合优化调控研究[J]. 清华大学学报(自然科学版). 2025, 65(10): 1868-1879 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.030
Bei YI, Xiaolian LIU, Xueni WANG, et al. Study on joint optimal operation of pumps and valves under phased shutdown of pumps based on the coati optimization algorithm[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(10): 1868-1879 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.030
中图分类号: TV134.1   

参考文献

1
石林, 张健, 俞晓东, 等. 长距离多支线输水系统稳压塔降高方案研究[J]. 华中科技大学学报(自然科学版), 2023, 51 (8): 67- 73.
SHI L , ZHANG J , YU X D , et al. Study on reducing height of surge tank in long-distance and multi-branch water conveyance system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (8): 67- 73.
2
王眺, 詹航, 万五一. 长距离输水系统停泵水锤防护多目标优化研究[J]. 水力发电学报, 2022, 41 (12): 90- 99.
WANG T , ZHAN H , WAN W Y . Multi-objective optimization method for water hammer protection against pump failure in long-distance water transfer systems[J]. Journal of Hydroelectric Engineering, 2022, 41 (12): 90- 99.
3
REZGHI A , RIASI A , TAZRAEI P . Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position[J]. Renewable Energy, 2020, 148, 478- 491.
4
WANG X T , ZHANG J , YU X D , et al. Formula for selecting optimal location of air vessel in long-distance pumping systems[J]. International Journal of Pressure Vessels and Piping, 2019, 172, 127- 133.
5
莫旭颖, 郑源, 阚阚, 等. 不同关阀规律与出水口形式对管路水锤的影响[J]. 排灌机械工程学报, 2021, 39 (4): 392- 396.
MO X Y , ZHENG Y , KAN K , et al. Influence of different valve closing rules and outlet form on pipeline water hammer[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39 (4): 392- 396.
6
丁梓恒, 俞晓东, 马世波, 等. 泵站加压与重力自流联合供水工程的停泵水锤防护[J]. 排灌机械工程学报, 2022, 40 (4): 338- 344.
DING Z H , YU X D , MA S B , et al. Pump failure water hammer protection of pumping station pressurization and gravity combined water supply project[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40 (4): 338- 344.
7
SHI L , ZHANG J , YU X D , et al. Water hammer protection for diversion systems in front of pumps in long-distance water supply projects[J]. Water Science and Engineering, 2023, 16 (2): 211- 218.
8
HANAEI S , LAKZIAN E . Numerical and experimental investigation of the effect of the optimal usage of pump as turbine instead of pressure-reducing valves on leakage reduction by genetic algorithm[J]. Energy Conversion and Management, 2022, 270, 116253.
9
BRENTAN B , MOTA F , MENAPACE A , et al. Optimizing pump operations in water distribution networks: Balancing energy efficiency, water quality and operational constraints[J]. Journal of Water Process Engineering, 2024, 63, 105374.
10
DEHGHANI M , MONTAZERI Z , TROJOVSKÁ E , et al. Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge- Based Systems, 2023, 259, 110011.
11
苏仁斌, 熊卫红, 刘先珊, 等. 基于新型元启发式BP神经网络的500 kV覆冰输电线路力学响应预测研究[J]. 应用基础与工程科学学报, 2024, 32 (1): 100- 122.
SU R B , XIONG W H , LIU X S , et al. Study on BP neural network based on a new metaheuristic optimization algorithm and prediction of mechanical response for 500kV UHV transmission Lines considering icing[J]. Journal of Basic Science and Engineering, 2024, 32 (1): 100- 122.
12
LAU J S , JIANG Y H , LI Z Y , et al. Stochastic trading of storage systems in short term electricity markets considering intraday demand response market[J]. Energy, 2023, 280, 128103.
13
HOUSSEIN E H , HAMMAD A , EMAM M M , et al. An enhanced coati optimization algorithm for global optimization and feature selection in EEG emotion recognition[J]. Computers in Biology and Medicine, 2024, 173, 108329.
14
WANG C , LIN H , HU H , et al. A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction[J]. Energy, 2024, 293, 130684.
15
JI B X , LIU H H , CHENG P , et al. Phased optimization of active distribution networks incorporating distributed photovoltaic storage system: A multi-objective coati optimization algorithm[J]. Journal of Energy Storage, 2024, 91, 112093.
16
杨凯, 苏艳萍, 杜强, 等. 基于多目标浣熊优化算法的双向长短期记忆神经网络预测[J]. 计算机测量与控制, 2025, 33 (1): 36- 44.
YANG K , SU Y P , DU Q , et al. BiLSM neural network prediction based on multi-objective COA[J]. Computer Measurement & Control, 2025, 33 (1): 36- 44.
17
赵云云, 李骐安, 陈正侠, 等. 基于多目标评价的市政道路径流污染控制生物滞留设施填料优化[J]. 水资源保护, 2021, 37 (3): 96- 101.
ZHAO Y Y , LI Q A , CHEN Z X , et al. Optimization of bioretention facility media for municipal road runoff pollution control based on multi-objective evaluation[J]. Water Resources Protection, 2021, 37 (3): 96- 101.
18
MAHDAVI N , MOJAVER P , KHALILARYA S . Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method[J]. Renewable Energy, 2022, 185, 506- 524.
19
HUANG J T , ZHOU Z , GAO Z H , et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30 (4): 1336- 1348.
20
安东, 杨德宇, 武文丽, 等. 基于改进多目标蜉蝣算法的配网电池储能系统最优选址定容[J]. 电力系统保护与控制, 2022, 50 (10): 31- 39.
AN D , YANG D Y , WU W L , et al. Optimal location and sizing of battery energy storage systems in a distribution network based on a modified multi-objective mayfly algorithm[J]. Power System Protection and Control, 2022, 50 (10): 31- 39.
21
杨博, 王俊婷, 俞磊, 等. 基于孔雀优化算法的配电网储能系统双层多目标优化配置[J]. 上海交通大学学报, 2022, 56 (10): 1294- 1307.
YANG B , WANG J T , YU L , et al. Peafowl optimization algorithm based bi-level multi-objective optimal allocation of energy storage systems in distribution network[J]. Journal of Shanghai Jiaotong University, 2022, 56 (10): 1294- 1307.
22
梁兴, 张剑焜, 李志红, 等. 超驼峰工况下轴流泵站事故停泵防护方案寻优[J]. 排灌机械工程学报, 2020, 38 (10): 1010- 1015.
LIANG X , ZHANG J K , LI Z H , et al. Optimizing protection scheme for accident shutdown of axial flow pumping station under super hump conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38 (10): 1010- 1015.
23
中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 泵站设计标准: GB 50265—2022[S]. 北京: 中国计划出版社, 2022.
Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard for pumping station design: GB 50265—2022[S]. Beijing: China Planning Press, 2022. (in Chinese)
24
LU M Y , LIU X L , XU G T , et al. Optimal pump-valve coupling operation strategy of complex long-distance water-conveyance systems based on MOC[J]. Ain Shams Engineering Journal, 2024, 15 (1): 102318.
25
KUMAR S , TEJANI G G , PHOLDEE N , et al. Hybrid heat transfer search and passing vehicle search optimizer for multi-objective structural optimization[J]. Knowledge- Based Systems, 2021, 212, 106556.
26
曹嘉乐, 杨磊, 田井林, 等. 面向高维多目标优化的双阶段双种群进化算法[J]. 计算机工程与应用, 2024, 60 (9): 159- 171.
CAO J L , YANG L , TIAN J L , et al. Dual-stage dual-population evolutionary algorithm for many-objective optimization[J]. Computer Engineering and Applications, 2024, 60 (9): 159- 171.

基金

国家自然科学基金面上项目(52379091)
山西省水利技术研究推广补助项目(2024GM21)
山西省基础研究计划项目(202203021222112)

版权

版权所有,未经授权,不得转载。
PDF(4660 KB)

审稿意见

Accesses

Citation

Detail

段落导航
相关文章

/