Review and prospect of microgravity single droplet combustion research

Haiyu SONG, Hengyi ZHOU, Wenyi ZHANG, Zixuan DING, Yuhang SUN, Yucheng LIU

Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (9) : 1736-1762.

PDF(15267 KB)
PDF(15267 KB)
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (9) : 1736-1762. DOI: 10.16511/j.cnki.qhdxxb.2024.27.037
Microgravity Combustion

Review and prospect of microgravity single droplet combustion research

Author information +
History +

Abstract

Significance: Single droplet combustion in a microgravity environment is an important model for understanding spray combustion. This study aims to enrich the theory of droplet combustion, providing crucial insights for practical applications such as engine design of aerospace and other spray combustion systems. Progress: By combining single droplet combustion experiments in microgravity with numerical simulations, this study discusses unique phenomena and analyzes the influence of various uncertainties, such as experimental methods and environmental conditions, on combustion characteristics. This study begins by explaining the D2 law, a fundamental theory of single droplet combustion, and its influencing factors. Then, it focuses on the suspending fiber wire technique, analyzing how it affects droplet combustion characteristics. This study examines soot shell formation, flame extinction phenomena, and cool flames during droplet combustion, discussing the mechanisms behind soot shell generation and its influence on the combustion process. The single-droplet flame, a typical diffusion flame, is affected by radiation extinction and diffusion extinction. The cool flame is controlled by the low-temperature oxidation reaction of hydrocarbon fuel, leading to a complex multistage ignition process in droplet combustion. In addition, this study reviews how high-pressure environments affect combustion characteristics and explores phenomena such as preferential evaporation and possible microexplosions during multicomponent droplet combustion. Finally, research on alternative fuels and biofuels reveals that biofuels produce considerably lower soot emissions than conventional hydrocarbon fuels. Conclusions and Prospects: By combining experiments and numerical simulations, this study expanded basic combustion theory through new phenomena observed in microgravity experiments, offering new ideas for developing microgravity experiments and improving numerical models. These experiments on single-droplet combustion in a microgravity environment made several important contributions: using new phenomena to address gaps in droplet combustion theory; revealing fundamental characteristics of autoignition, quasi-steady-state combustion, and extinction of different liquid fuels through experiments under reduced buoyancy convection conditions; and establishing a novel theoretical framework for droplet combustion based on multistage reaction flame structures. However, the experimental and theoretical aspects of single-droplet combustion in the microgravity environment still face several challenges: deficiencies in optical diagnostics for high-pressure combustion experiments, the lack of a large amount of experimental data to support relevant theories in high-pressure environments, the controversy of the pressure effect in microexplosions, insufficient experimental data for practical fuel surrogates, the difficulty in accurately using simple models with few components to develop representations of complex surrogates for practical fuels, and the lack of research data on new liquid fuels (e.g., biodiesel). Addressing these challenges can provide theoretical support for developing new combustion technologies and facilitate the transition to green and low-carbon energy solutions.

Key words

microgravity / single droplet / soot / flame extinction / cool flame / high pressure / multicomponent

Cite this article

Download Citations
Haiyu SONG , Hengyi ZHOU , Wenyi ZHANG , et al . Review and prospect of microgravity single droplet combustion research[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(9): 1736-1762 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.037

References

1
WEN Y Z , LI L F , LI X , et al. Extinction of microgravity partially premixed flame aboard the Chinese Space Station[J]. Proceedings of the Combustion Institute, 2024, 40(1-4): 105574.
2
MIKAMI M , MATSUMOTO K , YOSHIDA Y , et al. Space-based microgravity experiments on flame spread over randomly distributed n -decane-droplet clouds: Anomalous behavior in flame spread[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3167- 3174.
3
CHIU H H , KIM H Y , CROKE E J . Internal group combustion of liquid droplets[J]. Symposium (International) on Combustion, 1982, 19(1): 971- 980.
4
ZHOU H Y , LIU Y C . External group combustion of droplet clouds under two-stage autoignition conditions[J]. Combustion and Flame, 2021, 234, 111689.
5
UMEMURA A , TAKAMORI S . Percolation theory for flame propagation in non- or less-volatile fuel spray: A conceptual analysis to group combustion excitation mechanism[J]. Combustion and Flame, 2005, 141(4): 336- 349.
6
MIKAMI M , OYAGI H , KOJIMA N , et al. Microgravity experiments on flame spread along fuel-droplet arrays using a new droplet-generation technique[J]. Combustion and Flame, 2005, 141(3): 241- 252.
7
MIKAMI M , OYAGI H , KOJIMA N , et al. Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures[J]. Combustion and Flame, 2006, 146(3): 391- 406.
8
NOMURA H , IWASAKI H , SUGANUMA Y , et al. Microgravity experiments of flame spreading along a fuel droplet array in fuel vapor-air mixture[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2013- 2020.
9
YOSHIDA Y , IWAI K , NAGATA K , et al. Flame-spread limit from interactive burning droplets in microgravity[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3409- 3416.
10
MIKAMI M , MATSUMOTO K , CHIKAMI Y , et al. Appearance of cool flame in flame spread over fuel droplets in microgravity[J]. Proceedings of the Combustion Institute, 2023, 39(2): 2449- 2459.
11
KUMAGAI S , ISODA H . Combustion of fuel droplets in a falling chamber[J]. Symposium (International) on Combustion, 1957, 6(1): 726- 731.
12
DIETRICH D L , NAYAGAM V , HICKS M C , et al. Droplet Combustion Experiments Aboard the International Space Station[J]. Microgravity Science and Technology, 2014, 26(2): 65- 76.
13
TANABE M , BOLIK T , EIGENBROD C , et al. Spontaneous ignition of liquid droplets from a view of non-homogeneous mixture formation and transient chemical reactions[J]. Symposium (International) on Combustion, 1996, 26(1): 1637- 1643.
14
GODSAVE G A E . Studies of the combustion of drops in a fuel spray—the burning of single drops of fuel[J]. Symposium (International) on Combustion, 1953, 4(1): 818- 830.
15
SPALDING D B . Combustion of liquid fuels[J]. Nature, 1950, 165(4187): 160.
16
ROSS H D , GOLLAHALLI S R . Microgravity combustion: Fire in free fall[J]. Applied Mechanics Reviews, 2002, 55(6): B116- B117.
17
SIRIGNANO W A . Fuel droplet vaporization and spray combustion theory[J]. Progress in Energy and Combustion Science, 1983, 9(4): 291- 322.
18
LAW C K . Recent advances in droplet vaporization and combustion[J]. Progress in Energy and Combustion Science, 1982, 8(3): 171- 201.
19
CRESPO A , LIÑAN A . Unsteady effects in droplet evaporation and combustion[J]. Combustion Science and Technology, 1975, 11(1-2): 9- 18.
20
CHIN J S , LEFEBVRE A H . The role of the heat-up period in fuel drop evaporation[J]. International Journal of Turbo and Jet Engines, 1985, 2(4): 315- 325.
21
CHAUVEAU C , BIROUK M , GÖKALP I . An analysis of the d2-law departure during droplet evaporation in microgravity[J]. International Journal of Multiphase Flow, 2011, 37(3): 252- 259.
22
FAROUK T , DRYER F L . Microgravity droplet combustion: Effect of tethering fiber on burning rate and flame structure[J]. Combustion Theory and Modelling, 2011, 15(4): 487- 515.
23
MILLÁN-MERINO A , FERNÁNDEZ-TARRAZO E , SÁNCHEZ-SANZ M . Theoretical and numerical analysis of the evaporation of mono-and multicomponent single fuel droplets[J]. Journal of Fluid Mechanics, 2021, 910, A11.
24
XU G W , IKEGAMI M , HONMA S , et al. Inverse influence of initial diameter on droplet burning rate in cold and hot ambiences: A thermal action of flame in balance with heat loss[J]. International Journal of Heat and Mass Transfer, 2003, 46(7): 1155- 1169.
25
KUMAGAI S , SAKAI T , OKAJIMA S . Combustion of free fuel droplets in a freely falling chamber[J]. Symposium (International) on Combustion, 1971, 13(1): 779- 785.
26
TUCKERMANN R , BAUERECKER S , CAMMENGA H K . IR-thermography of evaporating acoustically levitated drops[J]. International Journal of Thermophysics, 2005, 26(5): 1583- 1594.
27
ALI AL ZAITONE B , TROPEA C . Evaporation of pure liquid droplets: Comparison of droplet evaporation in an acoustic field versus glass-filament[J]. Chemical Engineering Science, 2011, 66(17): 3914- 3921.
28
WISE H , LORELL J , WOOD B J . The effects of chemical and physical parameters on the burning rate of a liquid droplet[J]. Symposium (International) on Combustion, 1955, 5(1): 132- 141.
29
LIU Y C , XU Y , AVEDISIAN C T , et al. The effect of support fibers on micro-convection in droplet combustion experiments[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1709- 1716.
30
REHMAN H L U , WEISS J , SEERS P . Effect of heat conduction on droplet life time and evaporation rate under forced convection at low temperatures[J]. Experimental Thermal and Fluid Science, 2016, 72, 59- 66.
31
Drop tower experiments and modeling[EB/OL]. [2024-04-20]. https://www.princeton.edu/~fldryer/nasa.dir/current1.htm.
32
LIU Y C. Droplet combustion of surrogate and real fuel systems in a low convection condition: Ground-based and space-based experiments[D]. New York: Cornell University, 2013.
33
SEGAWA D , YOSHIDA M , NAKAYA S , et al. Autoignition and early flame behavior of a spherical cluster of 49 monodispersed droplets[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2149- 2156.
34
NAGATA H , KUDO I , ITO K , et al. Interactive combustion of two-dimensionally arranged quasi-droplet clusters under microgravity[J]. Combustion and Flame, 2002, 129(4): 392- 400.
35
TANABE M , KONO M , SATO J , et al. Two stage ignition of n -heptane isolated droplets[J]. Combustion Science and Technology, 1995, 108(1-3): 103- 119.
36
MORIUE O , EIGENBROD C , RATH H J , et al. Spontaneous ignition of n -alkane droplets with various volatility[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2004, 47(157): 189- 194.
37
TSUE M , ISHIMARU R , UKITA T , et al. Spontaneous ignition of fuel droplets in lean fuel-air mixtures[J]. Journal of Propulsion and Power, 2006, 22(6): 1339- 1348.
38
NOMURA H , MURAKOSHI T , SUGANUMA Y , et al. Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2425- 2432.
39
STRUK , P M , ACKERMAN M , NAYAGAM V , et al. On calculating burning rates during fiber supported droplet combustion[J]. Microgravity Science and Technology, 1998, 11(4): 144- 151.
40
AVEDISIAN C T , JACKSON G S . Soot patterns around suspended n -heptane droplet flames in a convection-free environment[J]. Journal of Propulsion and Power, 2000, 16(6): 974- 979.
41
YANG J R , WONG S C . An experimental and theoretical study of the effects of heat conduction through the support fiber on the evaporation of a droplet in a weakly convective flow[J]. International Journal of Heat and Mass Transfer, 2002, 45(23): 4589- 4598.
42
CHAUVEAU C , BIROUK M , HALTER F , et al. An analysis of the droplet support fiber effect on the evaporation process[J]. International Journal of Heat and Mass Transfer, 2019, 128, 885- 891.
43
SHRINGI D , DWYER H A , SHAW B D . Influences of support fibers on vaporizing fuel droplets[J]. Computers & Fluids, 2013, 77, 66- 75.
44
GHATA N , SHAW B D . Computational modeling of the effects of support fibers on evaporation of fiber-supported droplets in reduced gravity[J]. International Journal of Heat and Mass Transfer, 2014, 77, 22- 36.
45
WANG J G , HUANG X Y , QIAO X Q , et al. Experimental study on effect of support fiber on fuel droplet vaporization at high temperatures[J]. Fuel, 2020, 268, 117407.
46
LIU Y C , AVEDISIAN C T . A comparison of the spherical flame characteristics of sub-millimeter droplets of binary mixtures of n -heptane/iso-octane and n -heptane/toluene with a commercial unleaded gasoline[J]. Combustion and Flame, 2012, 159(2): 770- 783.
47
SHAW B D , DRYER F L , WILLIAMS F A , et al. Sooting and disruption in spherically symmetrical combustion of decane droplets in air[J]. Acta Astronautica, 1988, 17(11-12): 1195- 1202.
48
CHOI M Y, DRYER F L, GREEN G J, et al. Soot agglomeration in isolated, free droplet combustion[C]//Proceedings of the 31st Aerospace Sciences Meeting. Reno, USA: AIAA Paper, 1993.
49
JACKSON G S , AVEDISIAN C T . Modeling of spherically symmetric droplet flames including complex chemistry: Effect of water addition on n -heptane droplet combustion[J]. Combustion Science and Technology, 1996, 115(1-3): 125- 149.
50
PEREA A, GARCIA-YBARRA P L, CASTILLO J L. Soot diffusive transport effects affecting soot shell formation in droplet combustion[C]//Proceedings of the Mediterranean Combustion Symposium. Napoli, Italy: Istituto Di Ricerche Sulla Combustione, 1999: 275-285.
51
BEN-DOR G , ELPERIN T , KRASOVIT B . Effect of thermo—and diffusiophoretic forces on the motion of flame-generated particles in the neighbourhood of burning droplets in microgravity conditions[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2031): 677- 703.
52
DOBBINS R A , GOVATZIDAKIS G J , LU W , et al. Carbonization rate of soot precursor particles[J]. Combustion Science and Technology, 1996, 121(1-6): 103- 121.
53
MANZELLO S L , YOZGATLIGIL A , CHOI M Y . An experimental investigation of sootshell formation in microgravity droplet combustion[J]. International Journal of Heat and Mass Transfer, 2004, 47(24): 5381- 5385.
54
MIKAMI M , NIWA M , KATO H , et al. Clarification of the flame structure of droplet burning based on temperature measurement in microgravity[J]. Symposium (International) on Combustion, 1994, 25(1): 439- 446.
55
NAKAYA S , FUJISHIMA K , TSUE M , et al. Effects of droplet diameter on instantaneous burning rate of isolated fuel droplets in argon-rich or carbon dioxide-rich ambiences under microgravity[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1601- 1608.
56
CHANG K C , SHIER J S . Theoretical investigation of transient droplet combustion by considering flame radiation[J]. International Journal of Heat and Mass Transfer, 1995, 38(14): 2611- 2621.
57
BAEK S W , PARK J H , CHOI C E . Investigation of droplet combustion with nongray gas radiation effects[J]. Combustion Science and Technology, 1999, 142(1-6): 55- 79.
58
MOSS J B , STEWART C D , SYED K J . Flowfield modelling of soot formation at elevated pressure[J]. Symposium (International) on Combustion, 1989, 22(1): 413- 423.
59
STAGNI A , CUOCI A , FRASSOLDATI A , et al. Numerical investigation of soot formation from microgravity droplet combustion using heterogeneous chemistry[J]. Combustion and Flame, 2018, 189, 393- 406.
60
NOBILI A , FRASSOLDATI A , FARAVELLI T , et al. Soot formation in combustion of spherically symmetric isolated fuel droplets with different initial diameters[J]. Fuel, 2024, 363, 130403.
61
CHOI M Y, YOZGATLIGIL A, DRYER F L, et al. Experiments and model development for the investigation of sooting and radiation effects in microgravity droplet combustion[C]//Proceedings of the Sixth International Microgravity Combustion Workshop. Cleveland, USA: NASA, 2001.
62
NAYAGAM V , DIETRICH D L , FERKUL P V , et al. Can cool flames support quasi-steady alkane droplet burning?[J]. Combustion and Flame, 2012, 159(12): 3583- 3588.
63
TARIFA C S , DEL NOTARIO P P , MORENO F G . On the flight paths and lifetimes of burning particles of wood[J]. Symposium (International) on Combustion, 1965, 10(1): 1021- 1037.
64
LAW C K . Asymptotic theory for ignition and extinction in droplet burning[J]. Combustion and Flame, 1975, 24, 89- 98.
65
CHAO B H , LAW C K , T'IEN J S . Structure and extinction of diffusion flames with flame radiation[J]. Symposium (International) on Combustion, 1991, 23(1): 523- 531.
66
SAITOH T , YAMAZAKI K , VISKANTA R . Effect of thermal radiation on transient combustion of a fuel droplet[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1): 94- 100.
67
MARCHESE A J , DRYER F L . The effect of non-luminous thermal radiation in microgravity droplet combustion[J]. Combustion Science and Technology, 1997, 124(1-6): 371- 402.
68
MARCHESE A J , DRYER F L , COLANTONIO R O . Radiative effects in space-based methanol/water droplet combustion experiments[J]. Symposium (International) on Combustion, 1998, 27(2): 2627- 2634.
69
DIETRICH D L , HAGGARD J B , DRYER F L , et al. Droplet combustion experiments in spacelab[J]. Symposium (International) on Combustion, 1996, 26(1): 1201- 1207.
70
ZHANG B L , CARD J M , WILLIAMS F A . Application of rate-ratio asymptotics to the prediction of extinction for methanol droplet combustion[J]. Combustion and Flame, 1996, 105(3): 267- 290.
71
MARCHESE A J , DRYER F L . The effect of liquid mass transport on the combustion and extinction of bicomponent droplets of methanol and water[J]. Combustion and Flame, 1996, 105(1-2): 104- 122.
72
RAGHAVAN V , POPE D N , HOWARD D , et al. Surface tension effects during low-Reynolds-number methanol droplet combustion[J]. Combustion and Flame, 2006, 145(4): 791- 807.
73
RAGHAVAN V , POPE D N , GOGOS G . Effect of non-luminous flame radiation during methanol droplet combustion[J]. Combustion Science and Technology, 2008, 180(3): 546- 564.
74
NAYAGAM V . Activation energy asymptotics for methanol droplet extinction in microgravity[J]. Combustion and Flame, 2013, 160(11): 2638- 2640.
75
HICKS M C , NAYAGAM V , WILLIAMS F A . Methanol droplet extinction in carbon-dioxide-enriched environments in microgravity[J]. Combustion and Flame, 2010, 157(8): 1439- 1445.
76
MATALON M , LAW C K . Gas-phase transient diffusion in droplet vaporization and combustion[J]. Combustion and Flame, 1985, 59(2): 213- 215.
77
SHAW B D , VANG C L . Oxygen Lewis number effects on reduced gravity combustion of methanol and n -heptane droplets[J]. Combustion Science and Technology, 2016, 188(1): 1- 20.
78
NAYAGAM V , DIETRICH D L , HICKS M C , et al. Radiative extinction of large n -alkane droplets in oxygen-inert mixtures in microgravity[J]. Combustion and Flame, 2018, 194, 107- 114.
79
FAROUK T I , DRYER F L . On the extinction characteristics of alcohol droplet combustion under microgravity conditions—a numerical study[J]. Combustion and Flame, 2012, 159(10): 3208- 3223.
80
NAYAGAM V, MARCHESE A J, SACKSTEDER K R. Microgravity droplet combustion: An inverse scale modeling problem[M]//SAITO K. Progress in Scale Modeling: Summary of the First International Symposium on Scale Modeling (ISSM I in 1988) and Selected Papers from Subsequent Symposia (ISSM Ⅱ in 1997 through ISSM V in 2006). Dordrecht: Springer Netherlands, 2008: 169-178.
81
LIU Y C , XU Y H , HICKS M C , et al. Comprehensive study of initial diameter effects and other observations on convection-free droplet combustion in the standard atmosphere for n -heptane, n -octane, and n -decane[J]. Combustion and Flame, 2016, 171, 27- 41.
82
CUOCI A , AVEDISIAN C T , BRUNSON J D , et al. Simulating combustion of a seven-component surrogate for a gasoline/ethanol blend including soot formation and comparison with experiments[J]. Fuel, 2021, 288, 119451.
83
CUOCI A , SAUFI A E , FRASSOLDATI A , et al. Flame extinction and low-temperature combustion of isolated fuel droplets of n -alkanes[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2531- 2539.
84
MÜLLER U C , PETERS N , LIÑÁN A . Global kinetics for n -heptane ignition at high pressures[J]. Symposium (International) on Combustion, 1992, 24(1): 777- 784.
85
FAROUK T I , DRYER F L . Isolated n -heptane droplet combustion in microgravity: " Cool Flames "—two-stage combustion[J]. Combustion and Flame, 2014, 161(2): 565- 581.
86
FAROUK T I , HICKS M C , DRYER F L . Multistage oscillatory " Cool Flame " behavior for isolated alkane droplet combustion in elevated pressure microgravity condition[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1701- 1708.
87
DIETRICH D L , CALABRIA R , MASSOLI P , et al. Experimental observations of the low-temperature burning of decane/hexanol droplets in microgravity[J]. Combustion Science and Technology, 2017, 189(3): 520- 554.
88
FROLOV S M , BASEVICH V Y . Simulation of low-temperature oxidation and combustion of n -dodecane droplets under microgravity conditions[J]. Fire, 2023, 6(2): 70.
89
NAYAGAM V , DIETRICH D L , WILLIAMS F A . A Burke-Schumann analysis of dual-flame structure supported by a burning droplet[J]. International Communications in Heat and Mass Transfer, 2017, 87, 84- 89.
90
NAYAGAM V , DIETRICH D L , WILLIAMS F A . Partial-burning regime for quasi-steady droplet combustion supported by cool flames[J]. AIAA Journal, 2016, 54(4): 1235- 1239.
91
CUOCI A , FRASSOLDATI A , FARAVELLI T , et al. Numerical modeling of auto-ignition of isolated fuel droplets in microgravity[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1621- 1627.
92
ZHANG W Y , ZHOU H Y , LIU Y C . Autoignition regime boundaries for n -heptane droplets under microgravity[J]. Microgravity Science and Technology, 2022, 34(4): 57.
93
ZHANG W Y , SONG H Y , ZHOU H Y , et al. Can an isolated iso-octane droplet undergo multi-stage auto-ignition in air?[J]. Combustion and Flame, 2024, 261, 113293.
94
FAROUK T I , XU Y , AVEDISIAN C T , et al. Combustion characteristics of primary reference fuel (PRF) droplets: Single stage high temperature combustion to multistage "Cool Flame" behavior[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2585- 2594.
95
ANDO S , SHIMADA K , ETO D , et al. Experimental investigation of cool flame behavior of isolated n -decane/ethanol droplet under microgravity[J]. Microgravity Science and Technology, 2021, 33(4): 54.
96
NAYAGAM V , DIETRICH D L , WILLIAMS F A . Effects of properties of atmosphere diluents on cool-flame combustion of normal-alkane droplets[J]. Combustion and Flame, 2021, 229, 111408.
97
ALAM F E , AGHDAM A C , DRYER F L , et al. Oscillatory cool flame combustion behavior of submillimeter sized n -alkane droplet under near limit conditions[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3383- 3391.
98
XU Y H , FAROUK T I , HICKS M C , et al. Initial diameter effects on combustion of unsupported equi-volume n -heptane/iso-octane mixture droplets and the transition to cool flame behavior: Experimental observations and detailed numerical modeling[J]. Combustion and Flame, 2020, 220, 82- 91.
99
FAROUK T I , DRYER F L . Extinction characteristics of isolated n -alkane fuel droplets during low temperature cool flame burning in air[J]. Proceedings of the Combustion Institute, 2023, 39(2): 2471- 2481.
100
SPALDING D B . Theory of particle combustion at high pressures[J]. ARS Journal, 1959, 29(11): 828- 835.
101
MATLOSZ R L , LEIPZIGER S , TORDA T P . Investigation of liquid drop evaporation in a high temperature and high pressure environment[J]. International Journal of Heat and Mass Transfer, 1972, 15(4): 831- 852.
102
KADOTA T , HIROYASU H . Evaporation of a single droplet at elevated pressures and temperatures: 2nd report, theoretical study[J]. Bulletin of JSME, 1976, 19(138): 1515- 1521.
103
BALAJI B , RAGHAVAN V , RAMAMURTHI K , et al. A numerical study of evaporation characteristics of spherical n -dodecane droplets in high pressure nitrogen environment[J]. Physics of Fluids, 2011, 23(6): 063601.
104
REDLICH O , KWONG J N S . On the Thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233- 244.
105
SOAVE G . Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197- 1203.
106
PENG D Y , ROBINSON D B . A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59- 64.
107
ZHU G S , AGGARWAL S K . Fuel droplet evaporation in a supercritical environment[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(4): 762- 770.
108
YU D H , CHEN Z . Theoretical analysis on droplet vaporization at elevated temperatures and pressures[J]. International Journal of Heat and Mass Transfer, 2021, 164, 120542.
109
BAE J H , AVEDISIAN C T . High-pressure combustion of submillimeter-sized nonane droplets in a low convection environment[J]. Combustion and Flame, 2006, 145(3): 607- 620.
110
SATO J. Studies on droplet evaporation and combustion in high pressures[C]//Proceedings of the 31st Aerospace Sciences Meeting. Reno, USA: AIAA Paper, 1993.
111
CHAUVEAU C , GÖKALP I , SEGAWA D , et al. Effects of reduced gravity on methanol droplet combustion at high pressures[J]. Proceedings of the Combustion Institute, 2000, 28(1): 1071- 1077.
112
MEYER F , EIGENBROD C , WAGNER V , et al. Oxygen droplet combustion in hydrogen under microgravity conditions[J]. Combustion and Flame, 2022, 241, 112081.
113
GONG Y F , MA X , LUO K H , et al. A molecular dynamics study of evaporation mode transition of hydrocarbon fuels under supercritical conditions[J]. Combustion and Flame, 2022, 246, 112397.
114
WANG C H , LIU X Q , LAW C K . Combustion and microexplosion of freely falling multicomponent droplets[J]. Combustion and Flame, 1984, 56(2): 175- 197.
115
MAQUA C , CASTANET G , LEMOINE F . Bicomponent droplets evaporation: Temperature measurements and modelling[J]. Fuel, 2008, 87(13-14): 2932- 2942.
116
BRENN G , DEVIPRASATH L J , DURST F , et al. Evaporation of acoustically levitated multi-component liquid droplets[J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26): 5073- 5086.
117
BADER A , KELLER P , HASSE C . The influence of non-ideal vapor-liquid equilibrium on the evaporation of ethanol/iso-octane droplets[J]. International Journal of Heat and Mass Transfer, 2013, 64, 547- 558.
118
NI Z J , HESPEL C , HAN K , et al. The non-ideal evaporation behaviors of ethanol/heptane droplets: Impact on diameter, temperature evolution and the light scattering by droplet at the rainbow angle[J]. International Journal of Heat and Mass Transfer, 2021, 164, 120401.
119
FAROUK T I , WON S H , DRYER F L . Sub-millimeter sized multi-component jet fuel surrogate droplet combustion: Physicochemical preferential vaporization effects[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3313- 3323.
120
LUO L , LIU Y C . Controlling parameters and regimes for preferential vaporization of jet fuel droplet with liquid transport and convection[J]. Fuel, 2022, 321, 123817.
121
LUO L , LIU Y C . Variation of gas phase combustion properties of complex fuels during vaporization: Comparison for distillation and droplet scenarios[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3287- 3294.
122
ANTONOV D V , FEDORENKO R M , STRIZHAK P A . Micro-explosion phenomenon: Conditions and benefits[J]. Energies, 2022, 15(20): 7670.
123
PAN K L , CHIU M C . Droplet combustion of blended fuels with alcohol and biodiesel/diesel in microgravity condition[J]. Fuel, 2013, 113, 757- 765.
124
COUGHLIN B , HOXIE A . Combustion characteristics of ternary fuel Blends: Pentanol, butanol and vegetable oil[J]. Fuel, 2017, 196, 488- 496.
125
CHAO C Y , TSAI H W , PAN K L , et al. On the microexplosion mechanisms of burning droplets blended with biodiesel and alcohol[J]. Combustion and Flame, 2019, 205, 397- 406.
126
GHASSEMI H , BAEK S W , KHAN Q S . Experimental study on binary droplet evaporation at elevated pressures and temperatures[J]. Combustion Science and Technology, 2006, 178(6): 1031- 1053.
127
WANG C H , LAW C K . Microexplosion of fuel droplets under high pressure[J]. Combustion and Flame, 1985, 59(1): 53- 62.
128
HUANG J , ZHANG H T , HE Y , et al. Evaporation, autoignition and micro-explosion characteristics of RP-3 kerosene droplets under sub-atmospheric pressure and elevated temperature[J]. Energies, 2022, 15(19): 7172.
129
REIMERT M. Characterization of the autoignition of single droplets of fischer-tropsch fuels and development of surrogates[D]. Bremen: Universität Bremen, 2012.
130
XU Y H , AVEDISIAN C T . Combustion of n -butanol, gasoline, and n -butanol/gasoline mixture droplets[J]. Energy & Fuels, 2015, 29(5): 3467- 3475.
131
LUO L , LIU Y C . An "artificial" activity coefficient modeling approach for emulating combustion and physical property variations during distillation of real complex fuel[J]. Combustion and Flame, 2021, 230, 111446.
132
PAN K L , LI J W , CHEN C P , et al. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition[J]. Combustion and Flame, 2009, 156(10): 1926- 1936.
133
BOTERO M L , HUANG Y , ZHU D L , et al. Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures[J]. Fuel, 2012, 94, 342- 347.
134
LIU Y C , SAVAS A J , AVEDISIAN C T . The spherically symmetric droplet burning characteristics of Jet-A and biofuels derived from camelina and tallow[J]. Fuel, 2013, 108, 824- 832.

RIGHTS & PERMISSIONS

All rights reserved. Unauthorized reproduction is prohibited.
PDF(15267 KB)

Accesses

Citation

Detail

Sections
Recommended

/