Design and ground testing of an acoustic slot burner for microgravity combustion experiments aboard the China Space Station

Yuzhe WEN, Xingxian LI, Longfei LI, Yucheng LIU

Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (9) : 1705-1716.

PDF(9922 KB)
PDF(9922 KB)
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (9) : 1705-1716. DOI: 10.16511/j.cnki.qhdxxb.2024.27.048
Microgravity Combustion

Design and ground testing of an acoustic slot burner for microgravity combustion experiments aboard the China Space Station

Author information +
History +

Abstract

Objective: Microgravity environment on the space station decouples buoyancy from other limit effects on flame instability. The decoupling facilitates the study dynamical response and associated theories of edge flame under vortical and acoustic excitation. Such research can contribute significantly to the theory development for flame instability control and prevention in energy and power systems and fire suppression mechanisms under microgravity conditions within spacecraft. Methods: The paper introduces the design and initial testing of an experimental apparatus aboard the China Space Station (CSS) for generating and studying acoustic or vortices disturbed edge flames. The apparatus comprises an acoustic slot burner and an optical module, installed on the gaseous combustion experiment insert within the Combustion Science Rack (CSR) aboard the CSS. Compared to traditional co-flow structures, the slot design assures a better control of shear effects and flow field uniformity, allowing more precise control of flame characteristics. Diagnostic methods are introduced to create and capture oscillating edge flames in orbit. The optical module and high-speed CCDs in the CSR are used for two-dimensional temperature inversion of flames. Structural optimization and unique optical beam-splitting design improve diagnostic accuracy and flame visibility. This setup provides a controlled environment to study the effects of vortical structures and acoustic disturbances on flame oscillations. Results: A set of ground testing experiments were conducted to verify the response of edge flames to acoustic disturbances across different acoustic frequencies and vortical disturbances generated by shear layers. At low vortex intensities, the edge flames exhibit low-frequency vertical oscillation patterns, while at high vortex intensities, the flames display high-frequency horizontal oscillation patterns. Under extreme stretching conditions, edge flames can even extinguish. Based on this analysis, future experiments are planned to refine the stability and extinction diagram boundaries of edge flame oscillation. Additional ground experiments and microgravity data will be collected to provide a comprehensive understanding of edge flame behavior under different shear layer strengths and acoustic frequencies. These experiments aim to develop a robust theoretical framework for predicting and controlling flame oscillations and instabilities, contributing to safer and more efficient energy and power systems. Conclusions: The design of the experimental apparatus for the CSS represents a significant advancement in the study of edge flame dynamics under microgravity. The initial results from ground tests demonstrate the complex interaction between flame behavior and external disturbances, which has direct implications for flame stability control in various applications. The stable operating conditions identified through ground experiments will serve as a reference for future experiments conducted in microgravity, where key parameters such as flame structure, response frequency, oscillation modes, and temperature field distribution will be further analyzed. Continued research in this field promises to enhance our understanding of combustion processes in both terrestrial and space environments, ultimately contributing to safer and more efficient energy systems.

Key words

China Space Station / partially premixed flame / gas jet flame / microgravity / burner design

Cite this article

Download Citations
Yuzhe WEN , Xingxian LI , Longfei LI , et al. Design and ground testing of an acoustic slot burner for microgravity combustion experiments aboard the China Space Station[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(9): 1705-1716 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.048

References

1
AGGARWAL S K . Extinction of laminar partially premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35 (6): 528- 570.
2
LYONS K M . Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments[J]. Progress in Energy and Combustion Science, 2007, 33 (2): 211- 231.
3
IRACE P H , LEE H J , WADDELL K , et al. Observations of long duration microgravity spherical diffusion flames aboard the International Space Station[J]. Combustion and Flame, 2021, 229, 111373.
4
GIASSI D , CAO S , BENNETT B A V , et al. Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity[J]. Combustion and Flame, 2016, 167, 198- 206.
5
CHIEN Y C , STOCKER D P , HEGDE U G , et al. Electric-field effects on methane coflow flames aboard the international space station (ISS): ACME E-FIELD flames[J]. Combustion and Flame, 2022, 246, 112443.
6
RONNEY P D , WACHMAN H Y . Effect of gravity on laminar premixed gas combustion Ⅰ: Flammability limits and burning velocities[J]. Combustion and Flame, 1985, 62 (2): 107- 119.
7
KIM J , KIM K N , WON S H , et al. Numerical simulation and flight experiment on oscillating lifted flames in coflow jets with gravity level variation[J]. Combustion and Flame, 2006, 145 (1-2): 181- 193.
8
BUCKMASTER J . Edge-flames[J]. Progress in Energy and Combustion Science, 2002, 28 (5): 435- 475.
9
SUGIU N , MOTOHASHI K , SAITO M , et al. Response of triple flame to acoustic oscillations[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016, 14 (30): 7- 12.
10
SAITO M, MOTOHASHI K, IEZUMI T, et al. Analysis of triple flame features under acoustic oscillations by using a deep auto-encoder[C]//AIAA Scitech 2019 Forum. San Diego, CA, USA: American Institute of Aeronautics and Astronautics, 2019: 2013.
11
CASEL M , OBERLEITHNER K , ZHANG F C , et al. Resolvent-based modelling of coherent structures in a turbulent jet flame using a passive flame approach[J]. Combustion and Flame, 2022, 236, 111695.
12
AKKERMAN V , LAW C K . Coupling of harmonic flow oscillations to combustion instability in premixed segments of triple flames[J]. Combustion and Flame, 2016, 172, 342- 348.
13
WANG C H , KAISER T L , MEINDL M , et al. Linear instability of a premixed slot flame: Flame transfer function and resolvent analysis[J]. Combustion and Flame, 2022, 240, 112016.
14
WEN Y Z , LI L F , LI X X , et al. Extinction of microgravity partially premixed flame aboard the Chinese Space Station[J]. Proceedings of the Combustion Institute, 2024, 40 (1-4): 105574.
15
温禹哲, 陈涛, 刘有晟. 基于干涉法和双色法原理的二维火焰测温误差分析[J]. 工程热物理学报, 2022, 43 (9): 2482- 2493.
WEN Y Z , CHEN T , LIU Y C . Error analysis on flame temperature measurement of two-dimensional flames based on interferometry and two-color pyrometry[J]. Journal of Engineering Thermophysics, 2022, 43 (9): 2482- 2493.
16
方钰, 郑会龙, 梅德清, 等. 中国空间站燃烧科学实验柜火焰温度及碳烟体积分数地面重建[J]. 中南大学学报(自然科学版), 2023, 54 (10): 4103- 4113.
FANG Y , ZHENG H L , MEI D Q , et al. Ground-based reconstruction of flame temperature and soot volume fraction for combustion science rack aboard China space station[J]. Journal of Central South University (Science and Technology), 2023, 54 (10): 4103- 4113.
17
张晓武, 郑会龙, 王琨, 等. 中国空间站燃烧科学实验系统燃烧室设计与分析[J]. 空间科学学报, 2021, 41 (2): 301- 309.
ZHANG X W , ZHENG H L , WANG K , et al. Combustion chamber design and analysis of the space station combustion science experimental system[J]. Chinese Journal of Space Science, 2021, 41 (2): 301- 309.
18
张晓武. 空间站燃烧科学实验系统燃烧诊断子系统结构设计与分析[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2021.
ZHANG X W. Structural design and analysis for combustion diagnosis subsystem of combustion science experimental system for space station[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2021. (in Chinese)
19
TAIRA K , BRUNTON S L , DAWSON S T M , et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal, 2017, 55 (12): 4013- 4041.
20
MAGINA N , ACHARYA V , LIEUWEN T . Forced response of laminar non-premixed jet flames[J]. Progress in Energy and Combustion Science, 2019, 70, 89- 118.
21
KARAMI S , TALEI M , HAWKES E R , et al. Local extinction and reignition mechanism in a turbulent lifted flame: A direct numerical simulation study[J]. Proceedings of the Combustion Institute, 2017, 36 (2): 1685- 1692.
22
KARAMI S , HAWKES E R , TALEI M , et al. Edge flame structure in a turbulent lifted flame: A direct numerical simulation study[J]. Combustion and Flame, 2016, 169, 110- 128.

RIGHTS & PERMISSIONS

All rights reserved. Unauthorized reproduction is prohibited.
PDF(9922 KB)

Accesses

Citation

Detail

Sections
Recommended

/