PDF(9783 KB)
Research progress in soot formation of gas diffusion flames under microgravity
Dezheng LI, Yang ZHANG, Hai ZHANG
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (9) : 1638-1652.
PDF(9783 KB)
PDF(9783 KB)
Research progress in soot formation of gas diffusion flames under microgravity
Significance: Research on soot formation in gas flames under microgravity conditions is a key area in combustion science. Studying soot production in microgravity environments not only elucidates fire behavior in space stations but also eliminates the influence of natural convection, creating a more controlled flame environment for detailed exploration of soot formation processes. The importance of microgravity research lies in its ability to provide essential data for advancing theoretical models and clarifying soot formation mechanisms. This research holds valuable implications for improving combustion technologies, benefiting applications on Earth and in space. Progress: This paper presents a comprehensive review of recent advances in the study of soot formation in gas flames under microgravity conditions. The review systematically summarizes research progress, emphasizing soot formation pathways, smoke point studies, and primary factors influencing soot formation in microgravity. Key methods covered include both qualitative and quantitative analyses, with a focus on advanced diagnostic techniques such as flame emission spectroscopy and laser-induced incandescence, which provide detailed data on soot concentration, particle size, and distribution. The findings indicate that most current research is centered on qualitative descriptions of soot formation, with a marked gap in quantitative analysis and detailed mechanistic insights. The necessity of multifactor coupling studies under microgravity is also highlighted to clarify the combined effects of variables such as fuel type, oxygen concentration, pressure, flow rate, and preheating on soot formation. Advanced diagnostic techniques are increasingly becoming essential tools for measuring soot concentration in space experiments. Conclusions and Prospects: The review concludes that although substantial progress has been achieved, future research should prioritize more detailed quantitative analyses and the development of comprehensive models to uncover fundamental soot formation mechanisms. Continued advancements and application of diagnostic techniques in space experiments are essential. Potential research directions include exploring novel diagnostic methods, improving measurement accuracy and reliability, and examining the effects of various external conditions on soot formation. As space research facilities, such as the Chinese Space Station, continue to advance, these developments will support more comprehensive experimental designs, multifactor coupling studies, and the integration of advanced diagnostic techniques with numerical simulations. These efforts will be critical for devising effective soot control strategies, thereby advancing combustion science and promoting cleaner, more efficient combustion technologies for both space and terrestrial applications. The review calls for collaborative efforts within the scientific community to leverage the advancements in microgravity research to further elucidate soot formation processes.
microgravity combustion / soot formation / gas fuel / influencing factors
| 1 |
|
| 2 |
|
| 3 |
|
| 4 |
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
|
| 9 |
FAETH G M. Homogeneous premixed and nonpremixed flames in microgravity: A review[C]//Proceedings of the AIAA/IKI Microgravity Science Symposium. Moscow, Russia: AIAA, 1991.
|
| 10 |
|
| 11 |
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
|
| 17 |
European users guide to low gravity platforms[EB/OL]. [2014-12-01]. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Research/European_user_guide_to_low_gravity_platforms.
|
| 18 |
|
| 19 |
ZHAO H G, QIU J W, WANG Y. System design and flight results of China SJ-10 recoverable microgravity experimental satellite[M]//DUAN E K, LONG M. Life science in space: experiments on board the SJ-10 recoverable satellite. Singapore: Springer, 2019: 13-46.
|
| 20 |
刘晓敏. 梦天舱就位, 中国空间站"T"字成型[J]. 国际太空, 2022 (11): 4- 5.
|
| 21 |
NASA. 2.2 second drop tower[EB/OL]. (2022-11-21)[2024-05-23]. https://www1.grc.nasa.gov/facilities/drop/.
|
| 22 |
NASA. Zero gravity research facility[EB/OL]. [2022-11-21]. https://www1.grc.nasa.gov/facilities/zero-g.
|
| 23 |
|
| 24 |
|
| 25 |
|
| 26 |
|
| 27 |
张建泉, 董文博, 张永康, 等. 电磁弹射微重力装置的仿真分析[J]. 力学与实践, 2022, 44 (6): 1381- 1393.
|
| 28 |
MORTAZAVI S, SUNDERLAND P, JURNG J, et al. Structure of soot-containing laminar jet diffusion flames[C]//Proceedings of the 31st Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1993.
|
| 29 |
ABBUD-MADRID A, STROUD C, OMALY P, et al. Combustion of bulk magnesium in carbon dioxide under reduced-gravity conditions[C]//37th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1999.
|
| 30 |
|
| 31 |
|
| 32 |
方钰. 中国空间站燃烧科学实验系统火焰辐射成像诊断技术研究[D]. 镇江: 江苏大学, 2022.
FANG Y. Research on diagnostic technology based on flame radiation imaging in combustion science experimental system aboard China Space Station[D]. Zhenjiang: Jiangsu University, 2022. (in Chinese)
|
| 33 |
|
| 34 |
KIMZEY J H. Skylab experiment M479 zero gravity flammability[C]//The 3rd Space Processing Symposium, Skylab Results. Houston, USA: NASA, 1974.
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 |
TORERO J L, WANG H Y, JOULAIN P, et al. Flat plate diffusion flames: Numerical simulation and experimental validation for different gravity levels; proceedings of the Materials and Fluids Under low Gravity[C]//Proceedings of the IXth European Symposium on Gravity-Dependent Phenomena in Physical Sciences Held. Berlin, Germany: Springer, 1995.
|
| 39 |
|
| 40 |
|
| 41 |
EDELMAN R, BAHADORI Y, OLSON S, et al. Laminar diffusion flames under micro-gravity conditions[C]//Proceedings of the 26th Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1988.
|
| 42 |
BAHADORI M, STOCKER D, EDELMAN R. Effects of pressure on microgravity hydrocarbon diffusion flames[C]//Proceedings of the 28th Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1990.
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
|
| 47 |
|
| 48 |
DAI Z, LIN K C, SUNDERLAND P B, et al. Flow/soot-formation interactions in nonbuoyant laminar diffusion flames[R]. Ann Arbor, Michigan: The University of Michigan, 2002.
|
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
DOTSON K, SUNDERLAND P, YUAN Z G, et al. Laminar smoke points in coflow measured aboard the international space station[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2012.
|
| 58 |
方钰, 郑会龙, 梅德清, 等. 中国空间站燃烧科学实验柜火焰温度及碳烟体积分数地面重建[J]. 中南大学学报(自然科学版), 2023, 54 (10): 4103- 4113.
|
| 59 |
|
| 60 |
|
| 61 |
|
| 62 |
BRIAN SPALDING D. Chapter 9-the laminar jet[M]//BRIAN SPALDING D. Combustion and Mass Transfer. Pergamon: Elsevier, 1979: 169-184.
|
| 63 |
|
| 64 |
|
| 65 |
|
| 66 |
YOUSEF BAHADORI M, STOCKER D P, VAUGHAN D F, et al. Chapter 4: Effects of buoyancy on laminar, transitional, and turbulent gas jet diffusion flames[M]//WILLIAMS F A, OPPENHEIM A K, OLFE D B, et al. Modern Developments in Energy, Combustion and Spectroscopy. Pergamon: Elsevier, 1993: 49-66.
|
| 67 |
|
| 68 |
|
| 69 |
LI Y T. Flame and smoke characterization in reduced gravity for enhanced spacecraft safety[D]. Paris: Sorbonne Université, 2022.
|
| 70 |
|
| 71 |
|
| 72 |
|
| 73 |
|
| 74 |
|
| 75 |
|
| 76 |
|
| 77 |
|
| 78 |
艾育华. 基于辐射成像的扩散火焰温度和烟黑浓度分布研究[D]. 武汉: 华中科技大学, 2006.
AI Y H. Study on profiles of the temperature and soot concentration by the radiative imaging[D]. Wuhan: Huazhong University of Science and Technology, 2006. (in Chinese)
|
| 79 |
|
| 80 |
STOCKER D P, TAKAHASHI F, MARK HICKMAN J, et al. Gaseous non-premixed flame research planned for the international space station[C]//Proceedings of the 2014 Spring Technical Meeting of the Central States Section of the Combustion Institute. USA: NASA, 2014.
|
| 81 |
STOCKER D P. Recent research on flames of gaseous fuel aboard the international space station[C]//Proceedings of the 33rd Japanese Conference on Microgravity Science and Application. Cleveland, OH, USA: NASA, 2021.
|
| 82 |
STOCKER D P. Laminar non-premixed flames of gaseous fuel aboard the international space station[C]//Proceedings of the 2022 Spring Technical Meeting of the Central States Section of The Combustion Institute. Detroit, MI, USA: NASA, 2022.
|
| 83 |
|
| 84 |
|
| 85 |
BRIAN SPALDING D. Chapter 10: The laminar diffusion flame[M]//BRIAN SPALDING D. Combustion and Mass Transfer. Pergamon: Elsevier, 1979: 185-198.
|
| 86 |
|
| 87 |
|
| 88 |
|
| 89 |
|
| 90 |
|
| 91 |
|
| 92 |
NASA. Coflow Laminar Diffusion Flame (CLD Flame) [EB/OL]. (2021-03-02)[2024-05-23]. https://www1.grc.nasa.gov/space/iss-research/iss-fcf/combustion-science/acme/experiments/cld-flame/.
|
| 93 |
|
| 94 |
|
| 95 |
|
/
| 〈 |
|
〉 |