PDF(4572 KB)
Influence of different rainfall amounts on parameter identification of rainfall-runoff models
Zibing CAI, Yongpeng LÜ, Sheng XIE, Dongquan ZHAO, Chenhao WU, Zhengxia CHEN, Haifeng JIA
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (10) : 1992-1999.
PDF(4572 KB)
PDF(4572 KB)
Influence of different rainfall amounts on parameter identification of rainfall-runoff models
Objective: Rainfall-runoff models are vital for the planning and management of sponge, resilient, and smart cities, enabling accurate hydrological simulations to support urban modernization. However, previous research on model parameter identification, calibration, and validation has predominantly focused on static factors such as land cover and soil permeability, neglecting the dynamic influence of rainfall intensity on parameter behaviors. Addressing this gap, this study systematically investigates parameter identification under light, moderate, and heavy rainfall scenarios using a typical urban drainage catchment within a Chinese Sponge City Pilot Project. Methods: The research employs the Infoworks ICM hydrodynamic model to explore dynamic relationships between rainfall conditions and parameters regulating runoff generation and concentration. Incorporating detailed terrain data (12.5 m resolution), land use classifications, and drainage network geometries (48 pipe segments), the model ensures high physical realism. The methodology integrates a structured methodology combining scenario-based simulations, sensitivity analysis, and multistage calibration to evaluate how parameters change with rainfall intensity. Rainfall scenarios are divided into three categories to simulate urban storm conditions, namely light (< 10 mm), moderate (10-25 mm), and heavy (>25 mm). The assessed parameters include the fixed runoff coefficient, initial loss parameters, and convergence parameters such as Manning's roughness coefficient. A sequential calibration framework integrates a revised Morris sensitivity analysis with gradient-based optimization, ensuring robust validation through independent datasets. Results: Results reveal significant rainfall-dependent parameter variations. The fixed runoff coefficient increases by 15%-25% with rising rainfall intensities, while convergence and initial loss parameters decrease by 30%-40% under heavy rainfall compared to light events. These trends align with physical mechanisms: high-intensity rainfall induces surface sealing (reducing infiltration via pore clogging) and accelerates flow velocities through steeper hydraulic gradients. Although physically consistent, such dynamics had not been systematically quantified in prior studies. Earlier research attributed parameter variations primarily to static catchment characteristics, overlooking the dynamic feedback between rainfall intensity and hydrological processes. For instance, the observed inverse relationship between rainfall intensity and initial loss parameters addresses a longstanding contradiction in urban hydrology, where conventional models artificially increased initial losses for heavy storms despite evidence of reduced infiltration. Similarly, the rainfall-dependent convergence parameter reduction challenges historical assumptions of static flow routing behaviors across varying storm magnitudes. These findings demonstrate rainfall intensity as a hidden driver of parameter dynamics, previously overlooked by calibration frameworks treating rainfall as a fixed boundary condition. Validation outcomes demonstrate substantial improvements in model performance with rainfall-adaptive parameterization, with dynamically calibrated models achieving Nash-Sutcliffe efficiency (NSE) values exceeding 0.80 across all scenarios. These models outperform static parameter models by 25%-35% in accuracy. Conclusions: The findings emphasize the crucial role of incorporating rainfall intensity as a dynamic variable in parameter calibration frameworks, particularly for storm events where conventional static models fall short. The study advances urban hydrology by quantifying rainfall-parameter relationships and introducing a scenario-specific calibration framework. By demonstrating how neglecting rainfall-intensity dependencies leads to systematic prediction biases, particularly during extreme events, the findings provide critical insights for optimizing sponge city infrastructure. Improved simulations of rainfall-runoff interactions under climate variability support the design of effective measures such as permeable pavements and retention basins.
rainfall-runoff model / parameter identification / rainfall amount / Infoworks ICM
| 1 |
夏军, 张印, 梁昌梅, 等. 城市雨洪模型研究综述[J]. 武汉大学学报(工学版), 2018, 51 (2): 95- 105.
|
| 2 |
胡伟贤, 何文华, 黄国如, 等. 城市雨洪模拟技术研究进展[J]. 水科学进展, 2010, 21 (1): 137- 144.
|
| 3 |
|
| 4 |
周玉文, 赵洪宾. 城市雨水径流模型研究[J]. 中国给水排水, 1997, 13 (4): 4- 6.
|
| 5 |
吴建立, 孙飞云, 董文艺, 等. 基于SWMM模拟的城市内河区域雨水径流和水质分析[J]. 水利水电技术, 2012, 43 (8): 90- 94.
|
| 6 |
何福力, 胡彩虹, 王民, 等. SWMM模型在城市排水系统规划建设中的应用[J]. 水电能源科学, 2015, 33 (6): 48- 53.
|
| 7 |
陈莎, 陈晓宏. 城市雨水径流污染及LID控制效果模拟[J]. 水资源保护, 2018, 34 (5): 13- 19.
|
| 8 |
黄显峰, 邵东国, 魏小华. 基于水量平衡的城市雨水利用潜力分析模型[J]. 武汉大学学报(工学版), 2007, 40 (2): 17-20, 33.
|
| 9 |
蒋海红. 基于Infoworks ICM模型的万州城区海绵城市试点建设雨水径流总量模拟分析[D]. 重庆: 重庆交通大学, 2019.
JIANG H H. Simulation of total rainwater runoff before and after the sponge city pilot construction in Wanzhou city based on Infoworks ICM model[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
|
| 10 |
王建龙, 涂楠楠, 席广朋, 等. 已建小区海绵化改造途径探讨[J]. 中国给水排水, 2017, 33 (18): 1- 8.
|
| 11 |
郭芝瑞, 崔建国, 张峰, 等. 基于Infoworks ICM的城市排水调蓄池位置选择[J]. 给水排水, 2016, 42 (2): 49- 52.
|
| 12 |
刘洋, 李俊奇, 车伍, 等. 北京市城区雨水径流污染控制与节能减排[J]. 环境污染与防治, 2008, 30 (9): 93- 96.
|
| 13 |
刘洁, 张翔, 陈华, 等. 基于SWMM低影响开发模块的城市雨洪模拟与分析[J]. 水资源研究, 2018, 7 (2): 182- 189.
|
| 14 |
黄国如, 吴思远. 基于Infoworks CS的雨水利用措施对城市雨洪影响的模拟研究[J]. 水电能源科学, 2013, 31 (5): 1-4, 17.
|
| 15 |
叶陈雷, 徐宗学, 雷晓辉, 等. 基于InfoWorks的城市水系水文水动力过程耦合模拟--以福州市江北城区及东北部山区为例[J]. 北京师范大学学报(自然科学版), 2019, 55 (5): 609- 616.
|
| 16 |
印定坤, 陈正侠, 李骐安, 等. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61 (1): 50- 56.
|
| 17 |
王中根, 夏军, 刘昌明, 等. 分布式水文模型的参数率定及敏感性分析探讨[J]. 自然资源学报, 2007, 22 (4): 649- 655.
|
| 18 |
周云峰. SWMM排水管网模型灵敏参数识别与多目标优化率定研究[D]. 杭州: 浙江大学, 2018.
ZHOU Y F. Sensitive parameters identification and multi-objective optimization calibration of SWMM drainage pipe network model[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
|
| 19 |
|
| 20 |
国小伟, 张海行, 赵晨辰, 等. 基于模型及在线监测的校园海绵改造项目效果评估[J]. 中国给水排水, 2020, 36 (16): 1-5, 11.
|
| 21 |
董欣, 杜鹏飞, 李志一, 等. SWMM模型在城市不透水区地表径流模拟中的参数识别与验证[J]. 环境科学, 2008, 29 (6): 1495- 1501.
|
| 22 |
王鹏, 董国庆, 阴祖荣, 等. 面向复杂情景的SWMM水质参数敏感性分析[J]. 河海大学学报(自然科学版), 2023, 51 (5): 31- 37.
|
| 23 |
|
| 24 |
谭琼. 排水系统模型在城市雨水水量管理中的应用研究[D]. 上海: 同济大学, 2007.
TAN Q. Application of drainage model for urban storm water quantity management[D]. Shanghai: Tongji University, 2007. (in Chinese)
|
| 25 |
黄金良, 杜鹏飞, 何万谦, 等. 城市降雨径流模型的参数局部灵敏度分析[J]. 中国环境科学, 2007, 27 (4): 549- 553.
|
| 26 |
HELSEL D R, HIRSCH R M, RYBERG K R, et al. Statistical methods in water resources[R]. Reston, VA: U.S. Geological Survey, 2020.
|
| 27 |
赵磊, 杨逢乐, 袁国林, 等. 昆明市明通河流域降雨径流水量水质SWMM模型模拟[J]. 生态学报, 2015, 35 (6): 1961- 1972.
|
| 28 |
郭生练, 熊立华, 杨井, 等. 基于DEM的分布式流域水文物理模型[J]. 武汉水利电力大学学报, 2000, 33 (6): 1- 5.
|
| 29 |
陈卫平, 涂宏志, 彭驰, 等. 环境模型中敏感性分析方法评述[J]. 环境科学, 2017, 38 (11): 4889- 4896.
|
| 30 |
|
| 31 |
|
/
| 〈 |
|
〉 |