PDF(9328 KB)
Preventing scour at offshore monopile foundation using artificial reefs: Hydrodynamic processes and scour reduction
Yuan GAO, Jianjun CHEN, Yu LEI, Ruichao LIU, Cheng BI, Han LI, Jing YUAN
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (8) : 1552-1560.
PDF(9328 KB)
PDF(9328 KB)
Preventing scour at offshore monopile foundation using artificial reefs: Hydrodynamic processes and scour reduction
Objective: With the growth of marine ranching and offshore wind power, finding sustainable ways to protect the ocean environment has become vital. Offshore wind power, a key renewable energy source, helps reduce carbon emissions and promote clean energy. Meanwhile, marine ranching enhances biodiversity and supports ocean conservation by cultivating marine organisms. A new approach combines these benefits by integrating artificial reefs with fixed offshore wind turbines. This strategy aims to restore marine ecosystems while mitigating foundation scouring caused by turbine-seawater interactions. This dual-purpose solution protects marine life while improving wind turbine stability. Despite growing interest in this integrated approach, quantitative research on the hydrodynamic effects of artificial reefs around offshore wind turbine foundations remains limited. This knowledge gap hinders the optimization of reef design for effective scour prevention. Among various types, triangular artificial reefs offer unique flow dynamical properties, but their potential remains underexplored. Methods: To address this knowledge gap, this study focuses on triangular artificial reefs. The study uses experiments to investigate how artificial reefs influence the flow field around offshore wind turbine foundations. Results show that reefs placed near turbine bases significantly alter the local flow environment, triggering key phenomena like the venturi effect, blocking effect, and flow guidance. These effects change the mean flow velocity and the spatiotemporal distribution of turbulence within the flow field, which in turn profoundly affect the dynamics of the surrounding environment. The venturi effect, for example, accelerates water as it flows through narrow gaps between reefs, creating areas of increased velocity. Conversely, the blocking effect slows flow velocity in certain regions, creating sheltered zones that may benefit marine life. Numerical simulations were conducted to analyze the bottom shear stress and the spatial gradient of the flow field. These simulations revealed the mechanisms through which artificial reefs alter scouring around offshore wind turbine foundations. By modifying flow patterns, the reefs effectively lower scour intensity at the base of the piles, providing a protective shield for the foundations. Results: The study found that the shear stress gradient, particularly changes in shear stress across the flow field, directly affects the extent of scour. Areas with higher shear stress experience more intense scouring, while regions with lower shear stress show reduced effects. This information is crucial for designing effective scour protection systems to enhance the durability and stability of offshore wind turbine foundations. Experiments were conducted to further investigate the role of artificial reefs in preventing scour. The results showed that the proper arrangement and configuration of triangular artificial reefs significantly reduced scour around turbine foundations. The shear stress gradient was found to be a key factor affecting how the flow is redirected and how well the seabed remains stable around the turbine piles. Conclusions: This study provides valuable insights into the hydrodynamic characteristics and scour protection potential of artificial reefs when combined with offshore wind turbine piles. The findings deepen our understanding of how these reefs influence flow dynamics and provide practical recommendations for optimizing the design and deployment of artificial reefs as a sustainable solution. By addressing marine ecosystem restoration and structural protection, this research serves as a foundation for future studies that aim to develop more efficient and environmentally friendly offshore wind power solutions.
artificial reefs / offshore wind power / numerical simulation / scour protection
| 1 |
于定勇, 赵伟, 王逢雨, 等. 不同布设间距下梯形台人工鱼礁体的水动力特性研究[J]. 海洋与湖沼, 2020, 51 (2): 283- 292.
|
| 2 |
郑延璇, 梁振林, 关长涛, 等. 三种叠放形式的圆管型人工鱼礁流场效应数值模拟与PIV试验研究[J]. 海洋与湖沼, 2014, 45 (1): 11- 19.
|
| 3 |
刘扬, 黄国兴. 六角型人工鱼礁流场效应试验研究[J]. 中国水运, 2021 (11): 60- 62.
|
| 4 |
张硕, 张世东, 初文华, 等. 六边形开口方形人工鱼礁水动力性能模型实验[J]. 水产学报, 2020, 44 (11): 1903- 1912.
|
| 5 |
张硕, 张世东, 胡夫祥, 等. 六边形开口方形人工鱼礁阻力系数数值模拟与模型试验比较研究[J]. 中国水产科学, 2020, 27 (11): 1350- 1359.
|
| 6 |
方继红, 林军, 杨伟, 等. 双层十字翼型人工鱼礁流场效应的数值模拟[J]. 上海海洋大学学报, 2021, 30 (4): 743- 754.
|
| 7 |
于定勇, 王逢雨, 钟延超, 等. 不同布设间距下方型人工鱼礁体的水动力特性数值研究[J]. 中国海洋大学学报, 2020, 50 (2): 126- 134.
|
| 8 |
崔恩苹, 张永强, 祝琳, 等. 千里岩岛西部人工鱼礁建设对周边海域水动力影响的数值模拟[J]. 海洋地质前沿, 2021, 37 (2): 10- 20.
|
| 9 |
|
| 10 |
刘心媚, 郑艳娜, 陈昌平, 等. 框架型与沉箱型人工鱼礁绕流特性的数值模拟[J]. 大连海洋大学学报, 2019, 34 (1): 133- 138.
|
| 11 |
谭赛飞, 王选志, 张美玲, 等. 长方体框架型人工鱼礁的流场效应[J/OL]. 应用力学学报. (2023-03-01)[2024-11-01]. http://kns.cnki.net/kcms/detail/61.1112.o3.20230227.1445.020.html.
TAN S F, WANG X Z, ZHANG M L, et al. Flow field effect of cuboid frame artificial reef[J/OL]. Chinese Journal of Applied Mechanics. (2023-03-01)[2024-11-01]. http://kns.cnki.net/kcms/detail/61.1112.o3.20230227.1445.020.html. (in Chinese)
|
| 12 |
成泽毅, 叶灿, 高宇, 等. 不同布设间距和来流速度下方型人工鱼礁上升流效应的数值模拟[J]. 海洋与湖沼, 2023, 54 (3): 665- 678.
|
| 13 |
|
| 14 |
黄远东, 龙催, 邓济通. 三棱柱型人工鱼礁绕流流场的CFD分析[J]. 水资源与水工程学报, 2013, 24 (1): 1- 4.
|
| 15 |
魏丽莹, 张宁川. 六角型人工鱼礁流场效应数值模拟[J]. 中国水运, 2023 (2): 110- 112.
|
| 16 |
|
| 17 |
朱嵘华, 王恒丰, 陈鹏宇, 等. 海上风电基础仿生草防冲刷试验[J]. 中国海洋平台, 2024, 39 (1): 80-84, 90.
|
| 18 |
范少涛, 朱嵘华, 陶梓健, 等. 某海上风电场基础结构防冲刷物理模型试验[J]. 中国海洋平台, 2023, 38 (6): 34-39, 67.
|
| 19 |
史卜涛, 苗运赞, 迟洪明, 等. 海上风机单桩基础海床冲刷模拟及防冲刷结构设计[J]. 建筑结构, 2023, 53 (增刊1): 2988- 2991.
|
| 20 |
王锋, 杨荣, 黄攀, 等. 海上风电单桩基础冲刷防护方案设计与应用[J]. 电工技术, 2023 (10): 73-75, 79.
|
| 21 |
张哲, 郑国富. 海水养殖与海上风电融合发展研究[J]. 中国渔业经济, 2023, 41 (2): 90- 98.
|
| 22 |
罗茵方, 方琼玟. "海洋牧场+海上风电"不止于构想[J]. 海洋与渔业, 2019 (2): 73- 75.
|
| 23 |
杨红生, 茹小尚, 张立斌, 等. 海洋牧场与海上风电融合发展: 理念与展望[J]. 中国科学院院刊, 2019, 34 (6): 700- 707.
|
/
| 〈 |
|
〉 |