PDF(8498 KB)
Research progress on safety evacuation and passenger transportation at metro stations
Maohua ZHONG, Yiqi ZHOU, Xiujiang XIA
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (12) : 2366-2378.
PDF(8498 KB)
PDF(8498 KB)
Research progress on safety evacuation and passenger transportation at metro stations
Significance: Safety evacuation and passenger transportation are key components of metro crowd control, requiring critical research related to passenger safety. With the rapid development of urban rail transit, a growing number of domestic and international scholars have conducted research on these components. To systematically understand developments and research trends in metro station safety evacuation and passenger transportation within the broader field of public safety, it is necessary to review and summarize relevant studies. Progress: First, relevant Chinese and English literature on metro station safety evacuation and passenger transportation was retrieved from the Web of Science database and the China National Knowledge Infrastructure database, and relevant information about the studies was recorded. Next, a bibliometric analysis was conducted, including publication volume statistics and keyword analysis. This study reviewed and summarized the characteristics of the research content and methodologies regarding both safety evacuation and passenger flow management. It summarized the advantages and disadvantages of existing research approaches and methods, providing future development directions. Bibliometric analysis showed that research on safety evacuation in China has developed rapidly, although studies on passenger transportation require further attention. To date, research on safety evacuation has focused primarily on metro station fires, whereas studies on passenger transportation have concentrated mainly on the organization and control of large passenger flows. In the field of safety evacuation, metro station safety evacuation is characterized by multi-level enclosed spaces, multi-stage evacuation routes, and large passenger flows. Field experiments are difficult to implement due to their limitations, and microscopic models such as the social force model and cellular automaton model have thus become the primary research tools. Future research still needs to integrate intelligent algorithms, such as big data and machine learning, to dynamically optimize evacuation routes. In the field of passenger transportation, metro station passenger flow is characterized by complex, multi-directional movements and batch arrivals, and research in this area mainly relies on numerical simulation methods. Existing research primarily aims to reduce passenger waiting times and train delay times and has achieved relative maturity in optimizing train schedules and improving transport capacity. Implementing passenger flow control measures has become the main approach to reducing passenger flow risks. However, in actual metro operations, there remains a deficiency in the networked multi-station collaborative response mechanism for passenger flow organization. Conclusions and Prospects: This study conducted a bibliometric analysis of the literature on safety evacuation and passenger transportation in metro stations. It reviewed the characteristics and study methodologies used in the literature, while discussing research progress and existing limitations. The study contributes to understanding the current state of research and development trends in metro station safety evacuation and passenger transportation. Furthermore, it argues that future studies in China should place greater emphasis on passenger transportation and incorporate advanced intelligent algorithms into research on both safety evacuation and passenger transportation.
public safety / metro station / crowd evacuation / passenger transportation
| 1 |
中国城市轨道交通协会. 城市轨道交通2024年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2025.
China Association of Metros. Statistical and analysis report on urban rail transit in 2024[R]. Beijing: China Association of Metros, 2025. (in Chinese)
|
| 2 |
王瑞山, 靳澜涛. 地铁场所踩踏事故的生成特征与风险治理——2008年以来15起典型事故的考察[J]. 中国人民公安大学学报(社会科学版), 2016, 32 (4): 141- 148.
|
| 3 |
|
| 4 |
钟茂华, 范维澄, 王清安, 等. 火灾事故时人员避灾策略的研究进展[J]. 自然灾害学报, 1999, 8 (3): 66- 71.
|
| 5 |
袁理明, 范维澄. 建筑火灾中人员安全疏散时间的预测[J]. 自然灾害学报, 1997, 6 (2): 30- 35.
|
| 6 |
刘小娜, 马东辉, 郭小东. 地铁突发事件典型案例分析[J]. 安全, 2006, 27 (6): 25- 26.
|
| 7 |
|
| 8 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地铁安全疏散规范: GB/T 33668—2017[S]. 北京: 中国标准出版社, 2017.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Code for safety evacuation of metro: GB/T 33668—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
|
| 9 |
谢灼利, 张建文, 魏利军, 等. 地铁车站站台火灾中人员的安全疏散[J]. 中国安全科学学报, 2004, 14 (7): 21- 25.
|
| 10 |
陈绍宽, 李思悦, 李雪, 等. 地铁车站内乘客疏散时间计算方法研究[J]. 交通运输系统工程与信息, 2008, 8 (4): 101- 107.
|
| 11 |
谢家宇. 基于仿真技术的城市轨道交通车站大客流疏运组织研究——以某车站为例[D]. 成都: 西南交通大学, 2022.
XIE J Y. Study on the large passenger flow distribution organization of urban rail transit transfer station based on simulation technology-take a station as an example[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese)
|
| 12 |
牛聚粉, 林雅琳, 楚馨悦, 等. 国内外应急疏散研究进展综述[J]. 安全与环境学报, 2025, 25 (1): 184- 195.
|
| 13 |
晨佳. 地铁车站火灾时疏散能力计算[J]. 地下工程与隧道, 1992 (4): 33- 35.
|
| 14 |
PROULX G. Variations of the information delivered to users during the emergency evacuation of a metro station and development of a stress model[D]. Montreal: Université de Montréal, 1991.
|
| 15 |
田娟荣, 周孝清, 李健. 地铁自动检票闸机对人员疏散的影响分析[J]. 火灾科学, 2006, 15 (1): 38- 43.
|
| 16 |
邢国新, 赵海龙, 任丹彤. 地铁车站安全疏散模型综述[J]. 安全与环境学报, 2023, 23 (7): 2417- 2427.
|
| 17 |
朱文浩, 朱海燕, 刘志钢. 水灾场景下的地铁车站人员疏散效率研究[J]. 科技通报, 2024, 40 (4): 84-89, 95.
|
| 18 |
|
| 19 |
裴瑞江. 城市轨道交通客运组织[M]. 北京: 机械工业出版社, 2009.
|
| 20 |
李子浩, 田向亮, 黎忠文, 等. 基于客流规律的地铁车站客流风险分析[J]. 清华大学学报(自然科学版), 2019, 59 (10): 854- 860.
|
| 21 |
MENG Y Y, LI Z W, ZHOU W, et al. Temporal-spatial analysis & visualization of passenger flow after opening new railway lines in Shenzhen metro[C]//Proceedings of the 4th Acm Sigspatial International Workshop on Safety and Resilience (EM-GIS 2018). Seattle, USA: Association Computing Machinery, 2018: 4.
|
| 22 |
|
| 23 |
陈勇, 杜棋东. 面向地铁大客流的智能化技术应用分析[J]. 无线互联科技, 2022, 19 (3): 85- 87.
|
| 24 |
陈晨, 陆丽丽, 曹祖平. 考虑恐慌特性的老年人疏散仿真研究[J]. 计算机仿真, 2021, 38 (5): 432- 436.
|
| 25 |
|
| 26 |
李涛, 陈娟, 马剑, 等. 地铁车站旅客紧急疏散效率实验研究[J]. 交通运输系统工程与信息, 2016, 16 (3): 228- 234.
|
| 27 |
静元, 范晶, 王刘兵. 某地铁车站自动扶梯人员疏散能力实验研究[J]. 消防技术与产品信息, 2016 (11): 14- 17.
|
| 28 |
叶伟. 地下空间楼梯人员上行疏散效率研究[D]. 重庆: 重庆大学, 2019.
YE W. Study on up-going evacuation efficiency ofstair personnel in underground space[D]. Chongqing: Chongqing University, 2019. (in Chinese)
|
| 29 |
张平. 引导行为影响下的行人运动规律及其应急疏散研究[D]. 合肥: 中国科学技术大学, 2023.
ZHANG P. Study on pedestrian movement and emergency evacuation under the effect of leader behavior[D]. Hefei: University of Science and Technology of China, 2023. (in Chinese)
|
| 30 |
|
| 31 |
|
| 32 |
|
| 33 |
FLORIAN M, MAHUT M, TREMBLAY N. A hybrid optimization-mesoscopic simulation dynamic traffic assignment model[C]//Proceeding of the ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585). Oakland, USA: IEEE, 2001: 118-121.
|
| 34 |
吕伟, 汪京辉, 房志明, 等. 基于介观元胞自动机的城市区域人员疏散模拟方法[J]. 物理学报, 2021, 70 (10): 100706.
|
| 35 |
|
| 36 |
|
| 37 |
周美琦, 杨晓霞, 张纪会, 等. 基于改进元胞自动机模型的地铁车厢乘客疏散模拟[J]. 复杂系统与复杂性科学, 2021, 18 (3): 35- 44.
|
| 38 |
杨雨函, 周义棋, 蔡爽, 等. 地铁站台高峰时期候车客流引导策略研究[J]. 中国安全生产科学技术, 2025, 21 (4): 20- 26.
|
| 39 |
|
| 40 |
|
| 41 |
吴健宏, 翁文国, 倪顺江. 基于GIS和Multi-Agent的城市应急疏散[J]. 清华大学学报(自然科学版), 2010, 50 (8): 1168- 1172.
|
| 42 |
刘全平, 梁加红, 李猛, 等. 基于多智能体和元胞自动机人群疏散行为研究[J]. 计算机仿真, 2014, 31 (1): 328- 332.
|
| 43 |
|
| 44 |
|
| 45 |
SPEARPOINT M, TEMPLETON A, GWYNNE S, et al. Evaluating guidance on fire evacuation from high-rise residential buildings using Dr Rita Fahy's research[J/OL]. Fire Technology, (2025-06-01)[2025-06-19]. https://link.springer.com/article/10.1007/s10694-025-01756-4.
|
| 46 |
杜长宝, 朱国庆, 李俊毅. 疏散模拟软件STEPS与Pathfinder对比研究[J]. 消防科学与技术, 2015, 34 (4): 456- 460.
|
| 47 |
|
| 48 |
何理. 地铁车站大客流疏运风险形成机理及行为特征研究[D]. 北京: 北京科技大学, 2015.
HE L. Study on the risk forming mechanism and behavior characteristic of large passenger flow transportation in subway station[D]. Beijing: University of Science and Technology Beijing, 2015. (in Chinese)
|
| 49 |
|
| 50 |
|
| 51 |
陈峰, 吴奇兵, 张慧慧, 等. 北京地铁1号线车站设施与客流关系分析[J]. 交通运输系统工程与信息, 2009, 9 (2): 93- 98.
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
李景瑞. 基于LEGION仿真技术的城市轨道交通换乘车站大客流疏运组织研究[D]. 廊坊: 华北科技学院, 2020.
LI J R. Study on the large-scale passenger flow distribution organization of urban rail transit transfer station based on LEGION simulation technology[D]. Langfang: North China Institute of Science and Technology, 2020. (in Chinese)
|
| 56 |
张顺勇. 基于Legion的地铁车站客流疏运仿真研究[J]. 未来城市设计与运营, 2022 (9): 54- 56.
|
| 57 |
陈雷钰, 张汝华, 马明迪. 基于AnyLogic的轨道交通车站大客流瓶颈识别与疏散组织优化[J]. 上海大学学报(自然科学版), 2023, 29 (4): 694- 704.
|
| 58 |
薛艳青, 张喜. 基于Anylogic仿真技术的北京南站客流组织优化分析[J]. 铁路计算机应用, 2012, 21 (2): 5- 8.
|
| 59 |
李洪旭, 李海鹰, 樊校, 等. 基于Anylogic的地铁车站集散能力仿真分析评估[J]. 铁路计算机应用, 2012, 21 (8): 48-50, 55.
|
| 60 |
ZHANG X F, ZHONG Q, LI Y Q, et al. Simulation of fire emergency evacuation in metro station based on cellular automata[C]//Proceedings of the 20183rd IEEE International Conference on Intelligent Transportation Engineering (ICITE). Singapore, Singapore: IEEE, 2018: 40-44.
|
| 61 |
|
| 62 |
汤永净, 徐天龙. 地铁车站楼梯布置与安全疏散风险优化分析[C]//风险分析和危机反应的创新理论和方法——中国灾害防御协会风险分析专业委员会第五届年会论文集. 南京: 中国灾害防御协会风险分析专业委员会, 2012: 77-82.
TANG Y J, XU T L. Analysis on the stair distribution and evacuation risk optimization of subway station[C]// Proceedings of the 5th Annual Meeting of Risk Analysis Council of China Association for Disaster-Prevention. Nanjing, China: China Academic Journal Electronic Publishing House, 2012: 77-82. (in Chinese)
|
| 63 |
|
| 64 |
杜彩军, 蒋玉琨. 城市轨道交通与其他交通方式接驳规律的探讨[J]. 都市快轨交通, 2005, 18 (3): 45- 49.
|
| 65 |
孙会君, 冯宗旭, 郑汉坤. 考虑地铁运营中断下多站协同的接驳公交优化研究[J]. 交通运输系统工程与信息, 2023, 23 (2): 111-120, 175.
|
| 66 |
宋冰晶. 地铁结合高铁区域交通枢纽立体化模式研究[J]. 铁道工程学报, 2012, 29 (2): 90- 96.
|
| 67 |
|
| 68 |
|
| 69 |
|
| 70 |
|
| 71 |
|
| 72 |
|
| 73 |
|
| 74 |
|
| 75 |
|
| 76 |
|
| 77 |
|
| 78 |
|
| 79 |
蒲一超. 基于SORT算法和光流模型的地铁车站客流运动轨迹识别方法研究[J]. 城市轨道交通研究, 2023, 26 (7): 7-12, 19.
|
/
| 〈 |
|
〉 |