PDF(35324 KB)
Research progress on natural graphite-based materials
Shiyu HOU, Yongtao ZHAO, Zhenghong HUANG, Wanci SHEN, Feiyu KANG
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (12) : 2379-2409.
PDF(35324 KB)
PDF(35324 KB)
Research progress on natural graphite-based materials
Significance: Natural graphite, a cornerstone of China's strategic mineral resources, enables the country to leverage its exceptional geological endowments and industrial prowess to maintain unparalleled global leadership. China's natural graphite industry dominates in both production output and high-value deep-processed products, such as spherical graphite and exfoliated graphite, positioning the country as a key strategic fulcrum in carbon materials competitiveness. Natural graphite, a thermodynamically stable crystalline allotrope of carbon, exhibits a hexagonal lattice structure in which sp2-hybridized carbon layers are stacked via weak van der Waals interactions. This intrinsic lamellar architecture underlies its unique material properties: high electrical and thermal conductivity, resistance to high and low temperatures, low friction coefficient, thermal stability, chemical inertness, and biocompatibility. Natural graphite is an irreplaceable foundational material that bridges traditional manufacturing with cutting-edge strategic emerging industries through its synergistic properties. In traditional industrial sectors, natural graphite demonstrates versatile applicability: in metallurgy, it functions as a carburetant and high-temperature refractory material; in mechanical engineering, its self-lubricating properties enable the fabrication of wear-resistant components such as precision bearings and seals; and in chemical processing, it can be modified through intercalation to create catalyst supports and advanced adsorption materials. Within strategic emerging industries, the strategic value of natural graphite is further elevated: high-purity spherical graphite acts as an irreplaceable precursor for lithium-ion battery anode materials, exfoliated graphite provides efficient oil-water separation, and flexible graphite is the material of choice for sealing systems operating under harsh environmental conditions. Progress: Recent advances in the exfoliation of graphite at room temperature have enabled the use of milder reaction conditions that better preserve its crystal structure. Unlike high-temperature processes, this method prevents local oxidation, resulting in exfoliated graphite worms with high flexibility. Room-temperature exfoliation can produce exfoliated graphite blocks with controllable shape, density, high mechanical strength, and excellent rebound. Electrochemically exfoliated graphene has few layers and a high yield, making it highly effective in enhancing the anti-corrosion performance of water-based coatings. Meanwhile, flexible graphite paper prepared by rolling has high electrical and thermal conductivity. Micro exfoliated graphite modified via room-temperature exfoliation can be combined with other metals to form lithium-ion battery anode materials with excellent rate performance and cycle stability. To address the growing demands for functional exfoliation and performance enhancement of natural graphite, this study systematically reviewed the latest research progress in six key categories: graphite intercalation compounds, natural graphite anode materials, exfoliated graphite, flexible graphite, graphene powder, and microcrystalline graphite-based isotropic graphite. The study systematically integrated research across the technological chain, including material synthesis, structural modulation, performance optimization, and industrial-scale application. Moreover, the intrinsic structure-activity relationships and critical technical bottlenecks in natural graphite-based materials were identified. Conclusions and Prospects: Natural graphite-based materials are poised to evolve toward higher performance, greener processes, and multifunctionality, serving as a key material for strategic emerging industries. This study provides a comprehensive reference for further research and industrial applications of natural graphite-based materials.
natural graphite / graphite interlayer compounds / exfoliated graphite / flexible graphite / graphene powder / isotropic graphite
| 1 |
康飞宇. 天然石墨的改性与应用[M]. 北京: 清华大学出版社, 2022.
|
| 2 |
李龙土, 沈万慈. 中国材料工程大典[M]. 北京: 化学工业出版社, 2006.
|
| 3 |
刘超, 赵汀, 刘胜前, 等. 2025—2035年中国天然石墨资源需求预测[J]. 中国矿业, 2024, 33 (7): 78- 88.
|
| 4 |
汪立. 石墨层间化合物[J]. 新型炭材料, 1990 (2): 16- 19.
|
| 5 |
康飞宇. 石墨层间化合物和膨胀石墨[J]. 新型炭材料, 2000, 15 (4): 80.
|
| 6 |
|
| 7 |
|
| 8 |
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
李宽. 天然微晶石墨的浸润性及制备各向同性石墨的研究[D]. 北京: 清华大学, 2016.
LI K. Wettability of natural microcrystalline graphite and its application in isotropic graphite preparation[D]. Beijing: Tsinghua University, 2016. (in Chinese)
|
| 13 |
郭泽宇. 局域石墨化碳纳米纤维的制备及其对NO的催化氧化性能[D]. 北京: 清华大学, 2016.
GUO Z Y. Preparation of partial graphitic carbon nanofibers and their catalytic performance for NO oxidation[D]. Beijing: Tsinghua University, 2016. (in Chinese)
|
| 14 |
林雨潇. 石墨的微膨处理工艺及其用作锂离子电池负极材料的研究[D]. 北京: 清华大学, 2014.
LIN Y X. Mild expansion treatment of graphite and its application as anode material in lithium ion battery[D]. Beijing: Tsinghua University, 2014. (in Chinese)
|
| 15 |
楠顶. 锂离子电池自支撑一维多孔碳与硅碳复合负极材料研究[D]. 北京: 清华大学, 2014.
NAN D. One dimensional porous carbon and Si/C anode materials for lithium ion batteries[D]. Beijing: Tsinghua University, 2014. (in Chinese)
|
| 16 |
丁翔. 石墨烯制备及其在锂离子电池负极中的应用研究[D]. 北京: 清华大学, 2012.
DING X. Synthesis and electrochemical properties of graphene as anode materials for lithium-ion batteries[D]. Beijing: Tsinghua University, 2012. (in Chinese)
|
| 17 |
时迎迎. 天然炭材料做为锂离子电池负极材料的研究[D]. 北京: 清华大学, 2012.
SHI Y Y. Preparation and electrochemical properties of natural carbon materials as anode materials in lithium ion rechargeable battery[D]. Beijing: Tsinghua University, 2012. (in Chinese)
|
| 18 |
王宁. 用天然微晶石墨制备各向同性石墨的研究[D]. 北京: 清华大学, 2011.
WANG N. Study on preparation of isotropic graphite with nature amorphous graphite[D]. Beijing: Tsinghua University, 2011. (in Chinese)
|
| 19 |
高建平, 边祥成, 项春雷. 可膨胀石墨阻燃聚氨酯泡沫塑料的研究进展[J]. 广东化工, 2012, 39 (6): 295-296, 300.
|
| 20 |
刘艳芳. 石墨的插层和剥离及其催化性能研究[D]. 武汉: 武汉大学, 2016.
LIU Y F. The intercalation and exfoliation of graphite and its catalytic properties[D]. Wuhan: Wuhan University, 2016. (in Chinese)
|
| 21 |
|
| 22 |
|
| 23 |
HÉROLD A. Crystallo-chemistry of carbon intercalation compounds[M]//LÉVY F. Intercalated Layered Materials. Dordrecht: Springer, 1979: 323-421.
|
| 24 |
|
| 25 |
|
| 26 |
|
| 27 |
贾欣芮, 刘爱玲, 钟鑫, 等. 高压下多元硼碳基高温超导体的研究进展[J]. 高压物理学报, 2025, 39 (9): 090201.
|
| 28 |
|
| 29 |
|
| 30 |
韩志东. 新型石墨层间化合物的制备及其膨胀与阻燃机理的研究[D]. 哈尔滨: 哈尔滨理工大学, 2008.
HAN Z D. Preparation of novel graphite intercalation compounds and study on the expansion and flame retardant mechanism[D]. Harbin: Harbin University of Science and Technology, 2008. (in Chinese)
|
| 31 |
时虎. 石墨的开发及其应用[J]. 化工科技市场, 2001 (12): 24- 27.
|
| 32 |
|
| 33 |
刘金鹏, 宋克敏. 可膨胀石墨制备研究[J]. 功能材料, 1998 (6): 659- 661.
|
| 34 |
陈祖耀, 朱继平, 张增辉, 等. 可膨胀石墨的化学氧化法制备及其表征[J]. 中国科学技术大学学报, 1998, 28 (2): 205- 210.
|
| 35 |
杨东兴, 康飞宇, 郑永平. 用H2O2-H2SO4合成低硫GIC的研究[J]. 炭素技术, 2000 (2): 6- 10.
|
| 36 |
周明善, 李澄俊, 徐铭, 等. 石墨层间化合物FeCl3-CrO3-GIC的制备及性能研究[J]. 无机化学学报, 2006, 22 (11): 2049- 2054.
|
| 37 |
赵彦亮, 刘菲, 谭俊华, 等. 新型钆石墨层间化合物复合材料的制备及表征[J]. 山西化工, 2013, 33 (1): 8- 11.
|
| 38 |
刘道志, 蓝国祥, 王华馥. 电流对电化学插层制备高氯酸石墨层间化合物的影响[J]. 化学物理学报, 1992, 5 (2): 155- 160.
|
| 39 |
|
| 40 |
|
| 41 |
左明金, 康飞宇, 沈万慈. 用熔盐法合成FeCl3-ZnCl2三元石墨层间化合物[J]. 炭素技术, 1992 (3): 12- 16.
|
| 42 |
康飞宇, 周洲, 刘秀瀛. 用熔盐法合成FeCl3-CuCl2三元石墨层间化合物[J]. 碳素, 1991 (2): 11- 17.
|
| 43 |
康飞宇, 周洲, 刘秀瀛. 用熔盐法合成FeCl3-CuCl2三元石墨层间化合物的稳定性[J]. 碳素, 1992 (1): 6- 12.
|
| 44 |
|
| 45 |
|
| 46 |
|
| 47 |
盛银莹, 郑鹏, 张治国, 等. 熔融盐法制备CuCl2-石墨层间化合物及形成机理[J]. 华南理工大学学报(自然科学版), 2019, 47 (12): 99- 105.
|
| 48 |
梁酷. 锂电正极材料的发展现状[J]. 信息记录材料, 2021, 22 (5): 25- 27.
|
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
陈湘彪, 刘旋, 康飞宇, 等. 包覆鳞片石墨嵌锂行为的研究[J]. 电池, 2004, 34 (6): 394- 396.
|
| 53 |
张平伟, 叶尚云, 李锡力, 等. 锂离子蓄电池用天然石墨负极材料[J]. 电源技术, 2007, 31 (4): 281- 284.
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
|
| 61 |
|
| 62 |
|
| 63 |
|
| 64 |
|
| 65 |
|
| 66 |
|
| 67 |
|
| 68 |
|
| 69 |
|
| 70 |
|
| 71 |
|
| 72 |
|
| 73 |
|
| 74 |
|
| 75 |
|
| 76 |
|
| 77 |
|
| 78 |
|
| 79 |
|
| 80 |
|
| 81 |
|
| 82 |
|
| 83 |
|
| 84 |
|
| 85 |
|
| 86 |
|
| 87 |
|
| 88 |
|
| 89 |
|
| 90 |
|
| 91 |
王刚. 柔性石墨基导热复合材料的制备及性能研究[D]. 北京: 清华大学, 2015.
WANG G. Study on flexible thermal conductive composite based on exfoliated graphite[D]. Beijing: Tsinghua University, 2015. (in Chinese)
|
| 92 |
祝叶, 夏新兴. 膨胀石墨的制备及结构研究[J]. 陕西科技大学学报, 2011, 29 (1): 29- 31.
|
| 93 |
张鹏国, 黄火根. 膨胀石墨的化学氧化制备工艺优化[J]. 炭素技术, 2015, 34 (5): 22- 25.
|
| 94 |
彭俊芳, 康飞宇, 黄正宏. 填充氧化铁颗粒的石墨基复合材料[J]. 材料科学与工程, 2002, 20 (4): 469- 472.
|
| 95 |
傅云峰. 超低硫可膨胀石墨及可膨胀石墨复合材料制备研究[D]. 北京: 清华大学, 2003.
FU Y F. A study on preparation of ultra-low sulfur content expansible graphite and EG composite[D]. Beijing: Tsinghua University, 2003. (in Chinese)
|
| 96 |
黄雪, 崔英德, 尹国强, 等. 月桂酸-膨胀石墨复合相变材料的制备及性能[J]. 化工学报, 2015, 66 (S1): 370- 376.
|
| 97 |
|
| 98 |
|
| 99 |
罗立群, 刘斌, 王召, 等. 低温可膨胀石墨的制备及插层过程特性[J]. 化工进展, 2017, 36 (10): 3778- 3785.
|
| 100 |
谷成林. 稠油注蒸汽用低温可膨胀石墨体系制备及封窜机理研究[D]. 青岛: 中国石油大学(华东), 2020.
GU C L. Study on Preparation of low-temperature expandable graphite system and channeling control mechanism for heavy oil development by steam injection[D]. Qingdao: China University of Petroleum (East China), 2020. (in Chinese)
|
| 101 |
|
| 102 |
|
| 103 |
刘天琦. 氧化石墨烯膜层间通道的外源性调控及其对锂和氘的提取研究[D]. 兰州: 兰州大学, 2025.
LIU T Q. Exogenous regulation of interlayer channels in graphene oxide membranes for lithium and deuterium extraction[D]. Lanzhou: Lanzhou University, 2025. (in Chinese)
|
| 104 |
|
| 105 |
|
| 106 |
|
| 107 |
|
| 108 |
|
| 109 |
|
| 110 |
|
| 111 |
|
| 112 |
|
| 113 |
|
| 114 |
侯诗宇, 赵永涛, 李吉辉, 等. 天然石墨的室温膨化及应用[J]. 矿冶, 2025, 34 (5): 693-709, 754.
|
| 115 |
|
| 116 |
|
| 117 |
|
| 118 |
|
| 119 |
|
| 120 |
曹乃珍, 沈万慈, 刘英杰, 等. 膨胀石墨的微观孔结构分析[J]. 炭素技术, 1996 (1): 1- 6.
|
| 121 |
曹乃珍. 膨胀石墨的微观结构及吸附性能[D]. 北京: 清华大学, 1997.
CAO N Z. The micro-structure and adsorption performances of expanded graphite[D]. Beijing: Tsinghua University, 1997. (in Chinese)
|
| 122 |
周伟, 兆恒, 胡小芳, 等. 膨胀石墨水中吸油行为及机理的研究[J]. 水处理技术, 2001, 27 (6): 335- 337.
|
| 123 |
|
| 124 |
王海宁. 膨胀石墨的孔结构表征和吸附行为研究[D]. 北京: 清华大学, 2002.
WANG H N. An investigation on pore structure characterization and adsorption performance of exfoliated graphite[D]. Beijing: Tsinghua University, 2002. (in Chinese)
|
| 125 |
|
| 126 |
|
| 127 |
MARYSIN I, SHELEF G, SANDBANK E. Removal of oil from water: U.S. Patent 5, 282, 975[P]. 1994-2-1.
|
| 128 |
沈万慈, 王鲁宁. 膨胀石墨——油污染水处理的新材料[C]//非金属矿物材料与环保、生态、健康研讨会论文集. 北京: 中国硅酸盐学会非金属矿专业委员会, 国家建材工业科技教育委员会, 2003: 18-23.
SHEN W C, WANG L N. Expanded graphite: A new material for oil-contaminated water treatment[C]//Symposium on Non-Metallic Mineral Materials and Environmental Protection, Ecology and Health. Beijing, China: The Non-metallic Minerals Professional Committee of the Chinese Society for Silicate Materials, National Building Materials Industry Science and Technology Education Committee, 2003: 18-23. (in Chinese)
|
| 129 |
|
| 130 |
|
| 131 |
|
| 132 |
SHEN W C, CAO N Z, ZOU L, et al. Liquid-phase adsorption performance on expanded graphite[C]//International Symposium of Carbon. 1998: 384.
|
| 133 |
|
| 134 |
|
| 135 |
|
| 136 |
|
| 137 |
王会丽, 赵越, 马乐宽, 等. 复合改性膨胀石墨的制备及对酸性艳蓝染料的吸附[J]. 高等学校化学学报, 2016, 37 (2): 335- 341.
|
| 138 |
刘霂宇, 邱杨率, 张凌燕. 膨胀石墨负载铁氰化铜吸附Cs+特性研究[J]. 环境污染与防治, 2023, 45 (11): 1554- 1558.
|
| 139 |
朱敏聪. 膨胀石墨基复合材料的制备、改性及其对水中特定污染物去除的研究[D]. 上海: 东华大学, 2012.
ZHU M C. New expanded graphite-based composites: Preparation, modification and their use in specified pollutants removal feom aqueous solution[D]. Shanghai: Donghua University, 2012. (in Chinese)
|
| 140 |
王鲁宁, 陈希, 郑永平, 等. 膨胀石墨处理毛纺厂印染废水的应用研究[J]. 中国非金属矿工业导刊, 2004 (5): 59- 62.
|
| 141 |
陈飞, 许国根. 关于膨胀石墨对印染废水吸附脱色的研究[J]. 中国高新技术企业, 2009 (11): 99- 100.
|
| 142 |
赵颖华. 膨胀石墨的制备及其对金属离子去除性能的研究[D]. 上海: 东华大学, 2012.
ZHAO Y H. Experimental study on preparation and metal ions removal capability of expanded graphite[D]. Shanghai: Donghua University, 2012. (in Chinese)
|
| 143 |
|
| 144 |
沈万慈, 曹乃珍, 李晓峰, 等. 多孔石墨吸附材料的生物医学应用研究[J]. 新型碳材料, 1998, 13 (1): 50- 54.
|
| 145 |
|
| 146 |
|
| 147 |
张江锋. 柔性石墨复合密封材料制品的物理性能和机械性能研究[J]. 造纸装备及材料, 2020, 49 (3): 60.
|
| 148 |
饶娟, 张盼, 何帅, 等. 天然石墨利用现状及石墨制品综述[J]. 中国科学: 技术科学, 2017, 47 (1): 13- 31.
|
| 149 |
任京成, 沈万慈, 杨赞中, 等. 柔性石墨材料和膨胀石墨材料的现状及发展趋势[J]. 非金属矿, 1999, 22 (5): 5-7, 9.
|
| 150 |
杜韶川, 邱杨率, 吴益民, 等. 聚四氟乙烯真空加压浸渍改性柔性石墨垫片研究[J]. 硅酸盐通报, 2023, 42 (10): 3732- 3740.
|
| 151 |
何富超. 柔性石墨密封材料制备及其性能研究[D]. 武汉: 武汉理工大学, 2019.
HE F C. The study of preparation and properties of flexible graphite sealing materials[D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese)
|
| 152 |
贾晓红, 陈华明, 励行根, 等. 石墨垫片密封界面的力学特性[J]. 清华大学学报(自然科学版), 2016, 56 (2): 167- 170.
|
| 153 |
谢苏江, 朱宗亮. 高温抗氧化柔性石墨密封材料的制备和性能研究[J]. 流体机械, 2017, 45 (2): 12-16, 70.
|
| 154 |
|
| 155 |
童叶龙, 陶则超, 李一凡, 等. 碳基高导热材料及其在航天器上的应用[J]. 中国空间科学技术, 2022, 42 (1): 131- 138.
|
| 156 |
|
| 157 |
|
| 158 |
|
| 159 |
武涛, 郑永平, 黄正宏, 等. 柔性石墨双极板透气性的研究[J]. 材料科学与工程学报, 2005, 23 (2): 196- 199.
|
| 160 |
王春生, 孙英蕃, 田明磊, 等. 耐高温石墨颗粒-凝胶复配调剖剂研制及性能评价[J]. 油田化学, 2016, 33 (1): 56- 62.
|
| 161 |
肖庆宁, 甘全全, 戴威. 一种高导电性复合双极板及其制备方法和应用: CN117154124A[P]. 2023-12-01.
XIAO Q N, GAN Q Q, DAI W. High-conductivity composite bipolar plate as well as preparation method and application thereof: CN117154124A[P]. 2023-12-01. (in Chinese)
|
| 162 |
郑永平, 沈万慈, 冯彪. 一种高强度柔性石墨双极板及其制备方法: CN102569834A[P]. 2012-07-11.
ZHENG Y P, SHEN W C, FENG B. High-intensity flexible graphite double-pole plate and preparation method thereof: CN102569834A[P]. 2012-07-11. (in Chinese)
|
| 163 |
史惟澄, 杨代军, 刘金玲, 等. 燃料电池模压膨胀石墨/树脂复合双极板研究[J]. 电源技术, 2013, 37 (2): 324- 328.
|
| 164 |
陈惠, 刘洪波, 涂文懋, 等. 膨胀石墨/酚醛树脂复合材料双极板研究[J]. 中南大学学报(自然科学版), 2011, 42 (11): 3326- 3330.
|
| 165 |
常丰瑞, 黄俭标, 刘金玲, 等. 膨胀石墨/聚酰亚胺复合材料双极板的制备研究[J]. 化工新型材料, 2015, 43 (5): 65-67, 85.
|
| 166 |
花仕洋, 徐增师, 余罡, 等. 膨胀石墨在燃料电池双极板中的应用综述[J]. 船电技术, 2018, 38 (4): 11- 16.
|
| 167 |
黄道春, 陈家宏, 谷山强, 等. 石墨基柔性接地材料特性及其在防雷接地中的应用[J]. 高电压技术, 2018, 44 (6): 1766- 1773.
|
| 168 |
申克, 李宽, 黄正宏, 等. 天然微晶石墨为骨料乳化沥青为黏结剂的人造石墨研究[C]//2015中国石墨产业发展论坛. 鸡西: 中国非金属矿工业协会, 2015: 84-88.
SHEN K, LI K, HUANG Z H, et al. Study on artificial graphite with natural microcrystalline graphite as aggregate and emulsified asphalt as binder[C]//Proceedings of 2015 China Graphite Industry Development Forum. Jixi, China: China Non-metallic Minerals Industry Association, 2015: 84-88. (in Chinese)
|
| 169 |
申克, 黄正宏, 杨俊和, 等. 以中间相沥青微球制备各向同性石墨及其物理性质[C]//第22届炭—石墨材料学术会论文集. 宁波: 中国电工技术学会碳·石墨材料专业委员会, 2010: 231-237.
SHEN K, HUANG Z H, YANG J H, et al. Isotropic graphite and its physical properties from mesophase pitch microbeads[C]//Proceedings of the 22nd Carbon-Graphite Materials Academic Conference. Ningbo, China: The Specific Committee on Carbon-Graphite Materials of the China Electrotechnical Society, 2010: 231-237. (in Chinese)
|
| 170 |
|
| 171 |
印友法. 不同石墨材料力学性能与孔隙率的相关性研究[J]. 炭素技术, 1991 (4): 1- 4.
|
| 172 |
王宁, 申克, 郑永平, 等. 微晶石墨制备各向同性石墨的研究[J]. 中国非金属矿工业导刊, 2011 (2): 11-13, 27.
|
| 173 |
|
| 174 |
黄荣锦. 石墨烯获取方法与应用研究[J]. 中国矿业, 2025, 34 (S1): 583- 588.
|
| 175 |
|
| 176 |
王振廷, 戴东言, 李洋, 等. 石墨烯的机械剥离法制备及表征[J]. 黑龙江科技大学学报, 2018, 28 (2): 200- 203.
|
| 177 |
|
| 178 |
|
| 179 |
|
| 180 |
|
| 181 |
|
| 182 |
|
| 183 |
|
| 184 |
|
| 185 |
|
| 186 |
|
| 187 |
|
| 188 |
|
| 189 |
|
| 190 |
王露. 改进Hummers法制备氧化石墨烯及其表征[J]. 包装学报, 2015, 7 (2): 28-31, 37.
|
| 191 |
陈瑞灿, 王海燕, 韩永刚, 等. 氧化还原法制备石墨烯及其表征[J]. 材料导报, 2012, 26 (12): 114- 117.
|
| 192 |
|
| 193 |
|
| 194 |
万嗣明. Kish石墨基氧化石墨烯复合涂层的制备及防腐性能研究[D]. 北京: 中国矿业大学(北京), 2017.
WAN S M. Preparation and anticorrosion performance of Kish graphite-based graphene oxide composite coatings[D]. Beijing: China University of Mining and Technology (Beijing), 2017. (in Chinese)
|
| 195 |
杨晓勇, 卫洛, 许德平, 等. 石墨烯的电化学制备及其在储能领域的应用[J]. 化学工业与工程, 2019, 36 (6): 42- 54.
|
| 196 |
|
| 197 |
|
| 198 |
|
| 199 |
|
| 200 |
|
| 201 |
|
| 202 |
|
| 203 |
|
| 204 |
|
| 205 |
|
| 206 |
|
| 207 |
|
| 208 |
|
| 209 |
冷向星, 郑心纬, 杜鸿达, 等. 电纺高导热GO/PEO纤维的制备及性能[J]. 新型炭材料, 2018, 33 (2): 125- 130.
|
| 210 |
|
| 211 |
郭泽宇, 黄正宏, 康飞宇. 热处理温度对石墨烯/炭纳米复合纤维催化氧化NO性能的影响[J]. 新型炭材料, 2017, 32 (4): 338- 343.
|
| 212 |
|
| 213 |
|
| 214 |
|
| 215 |
|
| 216 |
|
| 217 |
|
/
| 〈 |
|
〉 |