PDF(15116 KB)
Analysis and optimization of key model parameters in turbulent swirling premixed flame simulations
Fan CHEN, Manyu ZHANG, Zhipeng YANG, Xu ZHU, Yi MO, Hua ZHOU, Zhuyin REN
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (10) : 2000-2016.
PDF(15116 KB)
PDF(15116 KB)
Analysis and optimization of key model parameters in turbulent swirling premixed flame simulations
Objective: Turbulent combustion models embedded in current combustion simulation software have successfully predicted performance across various combustor configurations. However, their accuracy is highly sensitive to model parameters, which must be iteratively adjusted and optimized in engineering practice to accommodate diverse combustor geometries, fuel types, and operating conditions. Thus, analyzing the main control mechanisms of turbulent combustion and establishing effective model parameter calibration and optimization processes are crucial for enhancing the prediction accuracy and reliability of combustion simulation software. Methods: This study selects an unconfined, strongly swirling lean premixed flame as the research object. It uses the active subspace method to analyze the effects of the key model parameters of the delayed detached eddy simulation turbulence model and dynamically thickened flame combustion model on the simulation errors of flame temperature and axial velocity. By identifying the high-dimensional mapping direction with the maximum gradient and retaining the main influencing directions in the parameter space, this method reduces dimensionality, based on which a low-dimensional response surface can be constructed for the multidimensional parameter input space. Furthermore, this study proposes a multimodel parameter optimization method that combines the active subspace method, a simple genetic algorithm, and the nondominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). Specifically, in the analysis of the main control mechanisms, the active subspace method is applied to the TECFLAM flame with the typical swirling premixed characteristics of combustors. Simulation calculations are performed to obtain parameters such as the turbulent dissipation coefficient and maximum flame thickening factor under different values. This helps in identifying the main control mechanisms by which these parameters affect simulation accuracy for the target variables like flame temperature and axial velocity, thereby revealing the parameter optimization direction for improving the accuracy of turbulent combustion simulations. Moreover, the proposed multimodel parameter optimization method for combustor simulations is used to optimize seven key turbulent combustion model parameters of the delayed detached eddy simulation turbulence model and dynamically thickened flame combustion model, including the turbulent dissipation coefficient and maximum flame thickening factor for a typical swirling premixed flame simulation case. Results: Results show that (1) the maximum flame thickening factor is the primary model parameter controlling the temperature and axial velocity errors of swirling premixed flame. (2) Calibrating the key parameters of the turbulent combustion model via the optimization process reduces the average temperature error at critical sections by 7.58% and the average axial velocity error by 42.60% when using the simple genetic algorithm alone. When using elitist NSGA-Ⅱ, the average temperature error at critical sections decreases further by 1.08%, and the average axial velocity error reduces by 2.96%. (3) The optimized model parameters significantly enhance simulation accuracy for typical swirling premixed flames, verifying the effectiveness of the proposed method. Conclusions: The proposed multimodel parameter optimization method effectively improves simulation accuracy for typical swirling premixed flames. It is applicable not only to resolve the parameter optimization problems of turbulent combustion models with the swirling premixed flame characteristics but also offers a new approach for circumventing multiparameter optimization issues in more complex two-phase simulations of combustors, including atomization, evaporation, turbulence, and combustion models.
turbulent combustion simulation / swirling lean premixed flame / active subspace method / parameter optimization / low-dimensional response surface
| 1 |
曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39 (5): 961- 970.
|
| 2 |
静大亮, 王珂, 陈曦, 等. 燃烧室数值仿真研究现状与发展趋势[J]. 航空动力, 2018 (1): 44- 47.
|
| 3 |
樊雪松, 陈阳, 吴德权, 等. 反应机理对air/H2燃烧系统多场耦合仿真的适用性[J]. 航空动力学报, 2018, 33 (10): 2392- 2403.
|
| 4 |
|
| 5 |
王娜娜, 解青, 苏星宇, 等. 湍流燃烧机理和调控的活性子空间分析方法[J]. 航空学报, 2021, 42 (12): 25228.
|
| 6 |
SLOTNICK J P, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. Washington, D. C. : NASA, 2014.
|
| 7 |
|
| 8 |
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
|
| 17 |
莫毅, 陈璠, 许笑颜, 等. 航空发动机燃烧室两相湍流燃烧建模与仿真[J]. 清华大学学报(自然科学版), 2023, 63 (4): 670- 680.
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
|
| 25 |
STRELETS M. Detached eddy simulation of massively separated flows[C]//Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2001: 879.
|
| 26 |
|
| 27 |
|
| 28 |
|
| 29 |
宋汉奇, 张恺玲, 马鸣, 等. DES与DDES在湍流分离中的原理与性能研究[J]. 北京航空航天大学学报, 2023, 49 (9): 2482- 2492.
|
| 30 |
|
| 31 |
LEGIER J P, POINSOT T, VEYNANTE D D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion[C]//Proceedings of the Summer Program. Stanford, USA: Center for Turbulence Research, 2000: 157-168.
|
| 32 |
|
| 33 |
LUKACZYK T W, CONSTANTINE P, PALACIOS F, et al. Active subspaces for shape optimization[C]//Proceedings of the 10th AIAA Multidisciplinary Design Optimization Conference. National Harbor, USA: AIAA, 2014: 1171.
|
| 34 |
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 |
阿嵘, 齐玢, 陈鑫, 等. 基于代理模型的双路燃气组合热试验参数优化[J]. 航空动力学报, 2023, 38 (9): 2097- 2106.
|
| 39 |
|
| 40 |
|
| 41 |
|
| 42 |
卓文波, 谭国笔, 陈秋任, 等. 基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化[J]. 焊接学报, 2024, 45 (4): 20- 25.
|
/
| 〈 |
|
〉 |