Analysis and optimization of key model parameters in turbulent swirling premixed flame simulations

Fan CHEN, Manyu ZHANG, Zhipeng YANG, Xu ZHU, Yi MO, Hua ZHOU, Zhuyin REN

Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (10) : 2000-2016.

PDF(15116 KB)
PDF(15116 KB)
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (10) : 2000-2016. DOI: 10.16511/j.cnki.qhdxxb.2025.27.040
Aerospace and Engineering Mechanics

Analysis and optimization of key model parameters in turbulent swirling premixed flame simulations

Author information +
History +

Abstract

Objective: Turbulent combustion models embedded in current combustion simulation software have successfully predicted performance across various combustor configurations. However, their accuracy is highly sensitive to model parameters, which must be iteratively adjusted and optimized in engineering practice to accommodate diverse combustor geometries, fuel types, and operating conditions. Thus, analyzing the main control mechanisms of turbulent combustion and establishing effective model parameter calibration and optimization processes are crucial for enhancing the prediction accuracy and reliability of combustion simulation software. Methods: This study selects an unconfined, strongly swirling lean premixed flame as the research object. It uses the active subspace method to analyze the effects of the key model parameters of the delayed detached eddy simulation turbulence model and dynamically thickened flame combustion model on the simulation errors of flame temperature and axial velocity. By identifying the high-dimensional mapping direction with the maximum gradient and retaining the main influencing directions in the parameter space, this method reduces dimensionality, based on which a low-dimensional response surface can be constructed for the multidimensional parameter input space. Furthermore, this study proposes a multimodel parameter optimization method that combines the active subspace method, a simple genetic algorithm, and the nondominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). Specifically, in the analysis of the main control mechanisms, the active subspace method is applied to the TECFLAM flame with the typical swirling premixed characteristics of combustors. Simulation calculations are performed to obtain parameters such as the turbulent dissipation coefficient and maximum flame thickening factor under different values. This helps in identifying the main control mechanisms by which these parameters affect simulation accuracy for the target variables like flame temperature and axial velocity, thereby revealing the parameter optimization direction for improving the accuracy of turbulent combustion simulations. Moreover, the proposed multimodel parameter optimization method for combustor simulations is used to optimize seven key turbulent combustion model parameters of the delayed detached eddy simulation turbulence model and dynamically thickened flame combustion model, including the turbulent dissipation coefficient and maximum flame thickening factor for a typical swirling premixed flame simulation case. Results: Results show that (1) the maximum flame thickening factor is the primary model parameter controlling the temperature and axial velocity errors of swirling premixed flame. (2) Calibrating the key parameters of the turbulent combustion model via the optimization process reduces the average temperature error at critical sections by 7.58% and the average axial velocity error by 42.60% when using the simple genetic algorithm alone. When using elitist NSGA-Ⅱ, the average temperature error at critical sections decreases further by 1.08%, and the average axial velocity error reduces by 2.96%. (3) The optimized model parameters significantly enhance simulation accuracy for typical swirling premixed flames, verifying the effectiveness of the proposed method. Conclusions: The proposed multimodel parameter optimization method effectively improves simulation accuracy for typical swirling premixed flames. It is applicable not only to resolve the parameter optimization problems of turbulent combustion models with the swirling premixed flame characteristics but also offers a new approach for circumventing multiparameter optimization issues in more complex two-phase simulations of combustors, including atomization, evaporation, turbulence, and combustion models.

Key words

turbulent combustion simulation / swirling lean premixed flame / active subspace method / parameter optimization / low-dimensional response surface

Cite this article

Download Citations
Fan CHEN , Manyu ZHANG , Zhipeng YANG , et al . Analysis and optimization of key model parameters in turbulent swirling premixed flame simulations[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(10): 2000-2016 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.040

References

1
曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39 (5): 961- 970.
CAO J G . Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39 (5): 961- 970.
2
静大亮, 王珂, 陈曦, 等. 燃烧室数值仿真研究现状与发展趋势[J]. 航空动力, 2018 (1): 44- 47.
JING D L , WANG K , CHEN X , et al. The progress on numerical simulation of combustion chamber[J]. Aerospace Power, 2018 (1): 44- 47.
3
樊雪松, 陈阳, 吴德权, 等. 反应机理对air/H2燃烧系统多场耦合仿真的适用性[J]. 航空动力学报, 2018, 33 (10): 2392- 2403.
FAN X S , CHEN Y , WU D Q , et al. Applicability of reaction mechanisms to multi-field coupling simulation of air/H2 combustion system[J]. Journal of Aerospace Power, 2018, 33 (10): 2392- 2403.
4
MUELLER M E , RAMAN V . Model form uncertainty quantification in turbulent combustion simulations: Peer models[J]. Combustion and Flame, 2018, 187, 137- 146.
5
王娜娜, 解青, 苏星宇, 等. 湍流燃烧机理和调控的活性子空间分析方法[J]. 航空学报, 2021, 42 (12): 25228.
WANG N N , XIE Q , SU X Y , et al. Active subspace methods for analysis and optimization of turbulent combustion[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (12): 25228.
6
SLOTNICK J P, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. Washington, D. C. : NASA, 2014.
7
REN Z Y , POPE S B . Sensitivity calculations in PDF modelling of turbulent flames[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 1629- 1637.
8
DUCHAINE F , BOUDY F , DUROX D , et al. Sensitivity analysis of transfer functions of laminar flames[J]. Combustion and Flame, 2011, 158 (12): 2384- 2394.
9
KHALIL M , LACAZE G , OEFELEIN J C , et al. Uncertainty quantification in LES of a turbulent bluff-body stabilized flame[J]. Proceedings of the Combustion Institute, 2015, 35 (2): 1147- 1156.
10
MISHRA A A , IACCARINO G . Uncertainty estimation for Reynolds-averaged Navier-stokes predictions of high-speed aircraft nozzle jets[J]. AIAA Journal, 2017, 55 (11): 3999- 4004.
11
HUAN X , SAFTA C , SARGSYAN K , et al. Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations[J]. AIAA Journal, 2018, 56 (3): 1170- 1184.
12
CONSTANTINE P G , DOW E , WANG Q Q . Active subspace methods in theory and practice: Applications to kriging surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36 (4): A1500- A1524.
13
JI W Q , WANG J X , ZAHM O , et al. Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs[J]. Combustion and Flame, 2018, 190, 146- 157.
14
WANG N N , XIE Q , SU X Y , et al. Quantification of modeling uncertainties in turbulent flames through successive dimension reduction[J]. Combustion and Flame, 2020, 222, 476- 489.
15
WEI J L , AN J , ZHANG Q , et al. Exploiting active subspaces for geometric optimization of cavity-stabilized supersonic flames[J]. AIAA Journal, 2023, 61 (8): 3353- 3364.
16
LIU Q K , MO Z Y , ZHANG A Q , et al. JAUMIN: A programming framework for large-scale numerical simulation on unstructured meshes[J]. CCF Transactions on High Performance Computing, 2019, 1 (1): 35- 48.
17
莫毅, 陈璠, 许笑颜, 等. 航空发动机燃烧室两相湍流燃烧建模与仿真[J]. 清华大学学报(自然科学版), 2023, 63 (4): 670- 680.
MO Y , CHEN F , XU X Y , et al. Modeling and simulation of two-phase turbulent combustion in aeroengine combustors[J]. Journal of Tsinghua University (Science and Technology), 2023, 63 (4): 670- 680.
18
SCHNEIDER C , DREIZLER A , JANICKA J . Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows[J]. Flow, Turbulence and Combustion, 2005, 74 (1): 103- 127.
19
FREITAG M , KLEIN M . Direct numerical simulation of a recirculating, swirling flow[J]. Flow, Turbulence and Combustion, 2005, 75 (1): 51- 66.
20
FREITAG M , KLEIN M , GREGOR M , et al. Mixing analysis of a swirling recirculating flow using DNS and experimental data[J]. International Journal of Heat and Fluid Flow, 2006, 27 (4): 636- 643.
21
JONES W P , MARQUIS A J , PRASAD V N . LES of a turbulent premixed swirl burner using the Eulerian stochastic field method[J]. Combustion and Flame, 2012, 159 (10): 3079- 3095.
22
PAPAFILIPPOU N , CHISHTY M A , GEBART R . On the flame shape in a premixed swirl stabilised burner and its dependence on the laminar flame speed[J]. Flow, Turbulence and Combustion, 2022, 108 (2): 461- 487.
23
SPALART P R . Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21 (3): 252- 263.
24
SPALART P R , DECK S , SHUR M L , et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20 (3): 181- 195.
25
STRELETS M. Detached eddy simulation of massively separated flows[C]//Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2001: 879.
26
GRITSKEVICH M S , GARBARUK A V , SCHÜTZE J , et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88 (3): 431- 449.
27
MARGHERI L , MELDI M , SALVETTI M V , et al. Epistemic uncertainties in RANS model free coefficients[J]. Computers & Fluids, 2014, 102, 315- 335.
28
XIAO H , CINNELLA P . Quantification of model uncertainty in RANS simulations: A review[J]. Progress in Aerospace Sciences, 2019, 108, 1- 31.
29
宋汉奇, 张恺玲, 马鸣, 等. DES与DDES在湍流分离中的原理与性能研究[J]. 北京航空航天大学学报, 2023, 49 (9): 2482- 2492.
SONG H Q , ZHANG K L , MA M , et al. Theory and performance research of DES and DDES in turbulent separation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (9): 2482- 2492.
30
COLIN O , DUCROS F , VEYNANTE D , et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12 (7): 1843- 1863.
31
LEGIER J P, POINSOT T, VEYNANTE D D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion[C]//Proceedings of the Summer Program. Stanford, USA: Center for Turbulence Research, 2000: 157-168.
32
CONSTANTINE P G , DIAZ P . Global sensitivity metrics from active subspaces[J]. Reliability Engineering & System Safety, 2017, 162, 1- 13.
33
LUKACZYK T W, CONSTANTINE P, PALACIOS F, et al. Active subspaces for shape optimization[C]//Proceedings of the 10th AIAA Multidisciplinary Design Optimization Conference. National Harbor, USA: AIAA, 2014: 1171.
34
MICHALEWICZ Z , SCHOENAUER M . Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation, 1996, 4 (1): 1- 32.
35
KATOCH S , CHAUHAN S S , KUMAR V . A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80 (5): 8091- 8126.
36
JEBARI K , MADIAFI M . Selection methods for genetic algorithms[J]. International Journal of Emerging Sciences, 2013, 3 (4): 333- 344.
37
HELTON J C , DAVIS F J . Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81 (1): 23- 69.
38
阿嵘, 齐玢, 陈鑫, 等. 基于代理模型的双路燃气组合热试验参数优化[J]. 航空动力学报, 2023, 38 (9): 2097- 2106.
A R , QI B , CHEN X , et al. Parameter optimization of dual gas flow combined thermal test based on surrogate model[J]. Journal of Aerospace Power, 2023, 38 (9): 2097- 2106.
39
GOLBERG D E . Genetic algorithms in search, optimization, and machine learning[M]. Massachusetts: Addison-Wesley, 1989.
40
SAMPSON J R . Adaptation in natural and artificial systems (John H. Holland)[J]. SIAM Review, 1976, 18 (3): 529- 530.
41
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transac-tions on Evolutionary Computation, 2002, 6 (2): 182- 197.
42
卓文波, 谭国笔, 陈秋任, 等. 基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化[J]. 焊接学报, 2024, 45 (4): 20- 25.
ZHUO W B , TAN G B , CHEN Q R , et al. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ[J]. Transactions of the China Welding Institution, 2024, 45 (4): 20- 25.

RIGHTS & PERMISSIONS

All rights reserved. Unauthorized reproduction is prohibited.
PDF(15116 KB)

Accesses

Citation

Detail

Sections
Recommended

/