Urban flood resilience assessment using a Bayesian space-time interaction model based on MCMC simulation

Wei WANG, Qianqian GUO, Chenhong XIA, Xiaodong GUO

Journal of Tsinghua University(Science and Technology) ›› 2026, Vol. 66 ›› Issue (2) : 201-210.

PDF(4754 KB)
PDF(4754 KB)
Journal of Tsinghua University(Science and Technology) ›› 2026, Vol. 66 ›› Issue (2) : 201-210. DOI: 10.16511/j.cnki.qhdxxb.2025.27.059
Public Safety

Urban flood resilience assessment using a Bayesian space-time interaction model based on MCMC simulation

Author information +
History +

Abstract

Objective: Against the backdrop of accelerated urbanization and climate change, accurately assessing flood resilience holds significant implications for the sustainable development of cities. Previous studies on flood resilience assessment have employed classical statistical methods, which are relatively sensitive to small-sample data and fail to consider the effect of spatial correlation on urban flood resilience. To mitigate disaster risks and enhance cities' capacity to withstand urban floods, this study focuses on examining the intrinsic spatial structures of flood resilience while accounting for spatial correlation and space-time heterogeneity. Methods: This study employed the Bayesian space-time interaction model (BSTIM) based on the Markov chain Monte Carlo method to achieve an accurate assessment of flood resilience. The model incorporated the spatial information of adjacent cities into the space-time evolution of flood resilience, enabling the revelation of the coupled space-time dynamics. In addition, a comparative study of the model was conducted to verify the effectiveness of the selected parameter. Finally, BSTIM was applied to assess flood resilience in 41 cities within the Yangtze River Delta region, and targeted policy recommendations were proposed. Results: The results showed that the space-time interpretation degree of BSTIM for urban flood resilience exceeded 93%, demonstrating excellent performance in fitting space-time data and enabling an accurate assessment of the space-time characteristics. (1) Flood resilience in the Yangtze River Delta region showed an upward trend during the study period, with the highest annual growth rate of 17.89% in 2017 and the lowest of 14.71% in 2009. (2) Significant differences existed in the spatial distribution of flood resilience across the region, forming an overall "low-high-medium" spatial pattern. (3) Local change trends varied considerably, presenting a characteristic pattern of "high in the east, low in the west, and medium in the north." (4) The spatial pattern of urban flood resilience exhibited significant differences in cold-hot spot clustering, with local changes forming a "cold in the west, hot in the east" pattern. Over half of the areas in the Yangtze River Delta region displayed "hot-hot" and "cold-hot" agglomeration characteristics, with "hot-hot" being the most prevalent. Conclusion: BSTIM provided an accurate assessment of space-time interaction effects in the space-time evolution of flood resilience. In addition, the model identified spatial distribution patterns, local change trends, cold-hot agglomeration distribution, and future development trends in flood resilience. Based on the results, the study captured the development dynamics of flood resilience in various cities of the Yangtze River Delta region, highlighting key priorities for flood prevention and mitigation. This research provides important reference value and theoretical support for effectively identifying critical areas for urban flood resilience development, thereby enhancing the flood resistance and disaster relief capabilities of urban agglomerations.

Key words

Markov chain Monte Carlo method / Bayesian space-time interaction model / urban flood resilience / the Yangtze River Delta

Cite this article

Download Citations
Wei WANG , Qianqian GUO , Chenhong XIA , et al. Urban flood resilience assessment using a Bayesian space-time interaction model based on MCMC simulation[J]. Journal of Tsinghua University(Science and Technology). 2026, 66(2): 201-210 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.059

References

1
张金良, 罗秋实, 王冰洁, 等. 城市极端暴雨洪涝灾害成因及对策研究进展[J]. 水资源保护, 2024, 40(1): 6- 15.
ZHANG J L, LUO Q S, WANG B J, et al. Research progress on causes and countermeasures for extreme rainstorm-induced urban flood disasters[J]. Water Resources Protection, 2024, 40(1): 6- 15.
2
王凯丰, 张洪斌, 力刚, 等. 城市洪涝韧性的研究进展及关键支撑技术综述[J]. 水利水电技术(中英文), 2023, 54(11): 77- 88.
WANG K F, ZHANG H B, LI G, et al. Advances in urban flood resilience study and its key supporting technologies review[J]. Water Resources and Hydropower Engineering, 2023, 54(11): 77- 88.
3
王启飞, 赵逸涵, 张慧, 等. 基于PSR和信息敏感性的城市韧性度评价: 以北京市为例[J]. 中国安全科学学报, 2023, 33(8): 198- 204.
WANG Q F, ZHAO Y H, ZHANG H, et al. Evaluation of urban resilience based on PSR model and information sensitivity: A case study of Beijing[J]. China Safety Science Journal, 2023, 33(8): 198- 204.
4
GHOSH M, NATARAJAN K, STROUD T W F, et al. Generalized linear models for small-area estimation[J]. Journal of the American Statistical Association, 1998, 93(441): 273- 282.
5
李俊明, 周佳卉, 李杰, 等. 基于贝叶斯统计的黄河流域生态文明与共同富裕的时空协同演进研究[J]. 地球信息科学学报, 2023, 25(4): 766- 782.
LI J M, ZHOU J H, LI J, et al. Spatio-temporal evolution and synergy of ecological civilization and common prosperity in the yellow river basin based on Bayesian statistics[J]. Journal of Geo-information Science, 2023, 25(4): 766- 782.
6
于明雪, 孙建国, 杨维涛, 等. 基于贝叶斯层次时空模型的甘肃省土地利用程度演变分析[J]. 地理科学, 2022, 42(5): 918- 925.
YU M X, SUN J G, YANG W T, et al. Evolution of land use degree in Gansu province based on Bayesian hierarchical spatio-temporal model[J]. Scientia Geographica Sinica, 2022, 42(5): 918- 925.
7
段琳琼, 陈维肖, 王楠楠, 等. 基于贝叶斯时空模型的建设用地扩张格局差异分析——以长三角和中原城市群为例[J]. 地域研究与开发, 2021, 40(1): 168- 174.
DUAN L Q, CHEN W X, WANG N N, et al. Analysis on difference of construction land expansion pattern based on Bayesian spatio-temporal model: Taking Yangtze River Delta and central plains urban agglomeration as examples[J]. Areal Research and Development, 2021, 40(1): 168- 174.
8
SONG J X, LIU J F, ZHANG X Y, et al. Spatio-temporal fluctuation analysis of ecosystem service values in northeast China over long time series: Based on Bayesian hierarchical modeling[J]. Land, 2024, 13(6): 833.
9
黄俊宝. 基于贝叶斯层次时空模型的中国区域科技创新能力研究[D]. 深圳: 深圳大学, 2020.
HUANG J B. Analysis of reginal technological innovation capability using Bayesian hierarchy spatio-temporal model[D]. Shenzhen: Shenzhen University, 2020. (in Chinese)
10
吕建康, 孙建国, 谢甫. 贝叶斯层次时空模型在甘肃省AOD时空分布中的应用[J]. 无线电工程, 2023, 53(3): 707- 713.
LYU J K, SUN J G, XIE P. Application of Bayesian hierarchical spatio-temporal model in spatio-temporal distribution of aerosol optical depth in Gansu Province[J]. Radio Engineering, 2023, 53(3): 707- 713.
11
陈长坤, 孙凤琳. 基于熵权-灰色关联度分析的暴雨洪涝灾情评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1067- 1073.
CHEN C K, SUN F L. Flood damage assessments based on entropy weight-grey relational analyses[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(6): 1067- 1073.
12
魏盛宇, 翟越, 赵廿. 基于多源数据的西安市暴雨洪涝脆弱性评估及其空间分异特性[J]. 清华大学学报(自然科学版), 2025, 65(1): 174- 185.
WEI S Y, ZHAI Y, ZHAO N. Urban storm waterlogging vulnerability assessment and spatial differentiation characteristics in Xi'an based on multisource data[J]. Journal of Tsinghua University (Science and Technology), 2025, 65(1): 174- 185.
13
WANG Y T, MENG F L, LIU H X, et al. Assessing catchment scale flood resilience of urban areas using a grid cell based metric[J]. Water Research, 2019, 163, 114852.
14
贺山峰, 梁爽, 吴绍洪, 等. 长三角地区城市洪涝灾害韧性时空演变及其关联性分析[J]. 长江流域资源与环境, 2022, 31(9): 1988- 1999.
HE S F, LIANG S, WU S H, et al. Analysis on spatio-temporal evolution and relevance of urban flood disaster resilience in Yangtze River Delta[J]. Resources and Environment in the Yangtze Basin, 2022, 31(9): 1988- 1999.
15
BERTILSSON L, WIKLUND K, DE MOURA TEBALDI I, et al. Urban flood resilience-a multi-criteria index to integrate flood resilience into urban planning[J]. Journal of Hydrology, 2019, 573, 970- 982.
16
CAO F F, XU X F, ZHANG C L, et al. Evaluation of urban flood resilience and its space-time evolution: A case study of Zhejiang province, China[J]. Ecological Indicators, 2023, 154, 110643.
17
YU S Y, KONG X S, WANG Q, et al. A new approach of Robustness-Resistance-Recovery (3Rs) to assessing flood resilience: A case study in Dongting Lake Basin[J]. Landscape and Urban Planning, 2023, 230, 104605.
18
SONG K, YOU S, CHON J. Simulation modeling for a resilience improvement plan for natural disasters in a coastal area[J]. Environmental Pollution, 2018, 242, 1970- 1980.
19
LIU D, FENG J P, LI H, et al. Spatiotemporal variation analysis of regional flood disaster resilience capability using an improved projection pursuit model based on the wind-driven optimization algorithm[J]. Journal of Cleaner Production, 2019, 241, 118406.
20
杨芳, 胡豫英, 宋利祥, 等. 基于动态网格和局部时间步长技术的城市洪涝模型加速方法[J]. 清华大学学报(自然科学版), 2024, 64(12): 2132- 2143.
YANG F, HU Y Y, SONG L X, et al. Acceleration method of the urban flood model based on the dynamic grid system and local time step technology[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(12): 2132- 2143.
21
代鑫, 黄弘, 汲欣愉, 等. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865- 873.
DAI X, HUANG H, JI X Y, et al. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(6): 865- 873.
22
代鑫, 黄弘, 于富才, 等. 暴雨内涝灾害下社区韧性压力测试方法研究[J]. 清华大学学报(自然科学版), 2024, 64(9): 1587- 1596.
DAI X, HUANG H, YU F C, et al. Research on community resilience stress testing method under rainstorm waterlogging disaster[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(9): 1587- 1596.
23
吕伟, 江惠华, 汪京辉, 等. 洪涝灾害下城市大规模人员疏散分区规划方法[J]. 清华大学学报(自然科学版), 2024, 64(11): 1880- 1892.
W, JIANG H H, WANG J H, et al. Urban large-scale evacuation zoning planning methods for flooding disasters[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(11): 1880- 1892.
24
张颖, 傅强. GJR-CAViaR模型的贝叶斯分位数回归——基于Gibbs抽样的MCMC算法实现[J]. 中央财经大学学报, 2017(7): 87- 95.
ZHANG Y, FU Q. Bayesian quantile regression of GJR-CAViaR model: An implementation of MCMC algorithm based on Gibbs sampling and its associated empirical analysis[J]. Journal of Central University of Finance & Economics, 2017(7): 87- 95.
25
杨文娇, 任黎, 张岑, 等. 基于贝叶斯的密云水库入库径流频率综合不确定性研究[J]. 水电能源科学, 2025, 43(5): 6-9, 28.
YANG W J, REN L, ZHANG C, et al. Integrated uncertainty of inflow runoff frequency of Miyun reservoir based on Bayes[J]. Water Resources and Power, 2025, 43(5): 6-9, 28.
26
RICHARDSON S, THOMSON A, BEST N, et al. Interpreting posterior relative risk estimates in disease-mapping studies[J]. Environmental Health Perspectives, 2004, 112(9): 1016- 1025.
27
韩秀兰, 王思贤, 李俊明. 基于人口老龄化的中国医疗卫生人员配置充分性测度——贝叶斯时空演化分析实证[J]. 数理统计与管理, 2023, 42(3): 381- 390.
HAN X L, WANG S X, LI J M. Research on the sufficiency of China's medical staff resource allocation based on aging population: Empirical analysis of Bayesian spatiotemporal evolution[J]. Journal of Applied Statistics and Management, 2023, 42(3): 381- 390.
28
张俊辉, 冯子健, 杨超, 等. 基于层次贝叶斯时空模型的空间多尺度联合分析模型的构建及应用研究[J]. 中国卫生统计, 2013, 30(2): 199- 202.
ZHANG J H, FENG Z J, YANG C, et al. Study on establishment and application of multiscale joint analysis model based on hierarchical Bayesian spatio-temporal model[J]. Chinese Journal of Health Statistics, 2013, 30(2): 199- 202.
29
GOLDSTEIN H, BROWNE W, RASBASH J. Partitioning variation in multilevel models[J]. Understanding Statistics, 2002, 1(4): 223- 231.
30
姚瑶, 李玉倩, 唐诗琪, 等. 基于熵权-TOPSIS模型的京冀灰岩矿区土壤质量评价[J]. 水文地质工程地质, 2025, 52(4): 87- 97.
YAO Y, LI Y Q, TANG S Q, et al. Entropy weight-TOPSIS model in soil quality evaluation of Beijing-Hebei limestone mining area[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 87- 97.
31
陈军飞, 张玉琦, 嵇娟, 等. 长三角城市群洪涝韧性时空演化及影响因素[J]. 水资源保护, 2024, 40(6): 58- 68.
CHEN J F, ZHANG Y Q, JI J, et al. Spatiotemporal evolution and influencing factors of flood resilience in Yangtze River Delta urban agglomeration[J]. Water Resources Protection, 2024, 40(6): 58- 68.

RIGHTS & PERMISSIONS

All rights reserved. Unauthorized reproduction is prohibited.
PDF(4754 KB)

Accesses

Citation

Detail

Sections
Recommended

/