PDF(60118 KB)
Research progress in mode transition technologies for turbine-based combined cycle engines
Xitong PEI, Bing WANG, Chenglu QI, Qiumeng QIAN, Qiaofeng XIE, Ziwan LI, Xinyu WANG
Journal of Tsinghua University(Science and Technology) ›› 2025, Vol. 65 ›› Issue (12) : 2410-2448.
PDF(60118 KB)
PDF(60118 KB)
Research progress in mode transition technologies for turbine-based combined cycle engines
Significance: Turbine-based combined cycle (TBCC) engine is an ideal propulsion system for hypersonic flight, with a wide-speed range, large flight envelope, and horizontal takeoff and landing capability. The TBCC engine, comprising an air-breathing gas turbine and a ramjet, has become a key aspect of current and future aerospace research. When the TBCC engine operates across a wide-speed range (Ma 0-7.0), it undergoes a mode transition between the gas turbine and the ramjet. This transition requires coordinated operation among various components and subsystems, involving a broad disciplinary scope, high technical complexity, and significant implementation challenges. Consequently, the mode transition has become a critical bottleneck in the development of TBCC engines. Progress: This study systematically reviews the development progress of TBCC engines across various countries and analyzes the "thrust gap" phenomenon and the multi-component matching challenges that occur during mode transition. The review encompasses four key aspects: (1) Intake system design and regulation technology: Current mature approaches, such as boundary layer bleeding and vortex generators, offer limited adjustability, making precise and rapid flow control challenging. Axisymmetric intakes, favored for their simplicity in series-configured TBCC engines during mode transitions, still require enhanced variable-geometry capabilities to improve performance. Additionally, two-dimensional and three-dimensional inward-turning intakes provide greater regulation flexibility and effectively suppress inlet coupling interference; however, their control strategies within intake systems demand further in-depth investigation. (2) High-performance turbine and ramjet engine design, as well as rocket-assisted boost technology: Modified high-speed turbine engines utilizing inlet pre-cooling show greater potential, compared to newly developed ones, though their advancement hinges on the creation of lightweight pre-coolers that can operate across wide temperature ranges. For wide-speed ramjet technologies, methods such as rotating detonation combustion, advanced inlet designs, and combustion optimization can effectively extend the operational Mach number range. However, integrating these technologies into combined-cycle engines requires further in-depth research. While rocket-assisted thrust augmentation directly addresses the "thrust gap, " incorporating an additional rocket engine may introduce significant structural complexity. (3) Exhaust system design and regulation technology: Future directions focus on efficient aerodynamic profile design and active control of shockwave-boundary layer interactions. Regarding nozzle configurations, both two-dimensional and three-dimensional nozzles can satisfy the exhaust expansion requirements of combined-cycle engines. Two-dimensional nozzles offer simpler structures but pose significant challenges for aerodynamic integration. In contrast, three-dimensional nozzles provide superior performance and better integration potential with the overall propulsion system; however, they involve greater design, manufacturing, and control complexities. (4) The combined-cycle engine system integration, mode transition control, and experimental testing technologies: The United States has conducted relatively comprehensive research, having completed integrated engine model-level mode transition tests and comparative analyses of various control algorithms. Nevertheless, most existing studies remain theoretical or limited to model validation. Conclusions and Prospects: Many conducted mode transition experiments have not fully addressed the variable-geometry adjustment of the inlet and exhaust systems or the dynamic cooperative control of the fully integrated engine. Consequently, future research should prioritize cross-system integrated cooperative control for combined-cycle engines, the development of advanced test facilities capable of simulating wide-range flight environments, and full-scale engine validation of mode transition processes. Key future research directions include optimizing off-design performance and multi-physics coupling in intake system design, advancing rotation detonation combustion technology, developing three-dimensional nozzle control and multi-duct collaborative matching techniques, and establishing a full-chain research and development system for TBCC engines.
combined cycle engines / mode transition / thrust trap / intake and exhaust system / integrated integration
| 1 |
王鹏飞, 刘红琴, 杨自牧, 等. 吸气式高超声速飞行器控制研究进展[J]. 空天技术, 2024(5): 33- 43.
|
| 2 |
侯晓. 组合循环发动机技术研究进展[J]. 航空学报, 2023, 44(21): 35- 47.
|
| 3 |
秦亚欣, 廖孟豪. 国外高超声速飞机动力发展研究[J]. 航空科学技术, 2023, 34(11): 17- 22.
|
| 4 |
陈博, 桂丰, 李茜, 等. 国外并联式涡轮基组合循环发动机技术发展途径浅析[J]. 燃气涡轮试验与研究, 2019, 32(1): 57- 62.
|
| 5 |
MCCONNAUGHEY P K, FEMMININEO M G, KOELFGEN S J, et al. NASA's launch propulsion systems technology roadmap[C]// Space Propulsion 2012. Bordeaux, France: NASA OCT, 2012: 1721.
|
| 6 |
郑日恒, 陈操斌. 涡轮基组合循环发动机推力陷阱问题解决方案[J]. 火箭推进, 2021, 47(6): 21- 32.
|
| 7 |
林威全, 许航瑞, 兰旭东. TBCC发动机的发展历程及关键技术分析[J]. 清华大学学报(自然科学版), 2024, 64(9): 1521- 1535.
|
| 8 |
苏纬仪, 杨振均, 安航. 宽域进气预冷系统匹配设计的研究挑战[J]. 航空动力, 2024(3): 56- 59.
|
| 9 |
詹骆骥, 尹明明. TBCC发动机技术发展综述[C]// 2019航空装备服务保障与维修技术论坛暨中国航空工业技术装备工程协会年会论文集. 南昌, 中国: 中国航空发动机控制系统研究院, 2019: 493-497.
ZHAN L J, YIN M M. Overview of TBCC technologies development[C]// The Aviation Equipment Service Support and Maintenance Technology Forum & Annual Conference of the China Aviation Industry Technology Equipment Engineering Association. Nanchang, China: China Aero Engine Control System Research Institute, 2019: 493-497. (in Chinese)
|
| 10 |
COLVILLE J, STARKEY R, LEWIS M. Extending the flight Mach number of the SR-71 inlet[C]// AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua, Italy: American Institute of Aeronautics and Astronautics, 2005: 3284.
|
| 11 |
刘松铭, 王荫驰. 美国空军秘密开发高超音速武器[J]. 坦克装甲车辆, 2022(18): 61- 65.
|
| 12 |
王巍巍, 郭琦. 美国典型的高超声速技术研究计划(上)[J]. 燃气涡轮试验与研究, 2013, 26(3): 53- 58.
|
| 13 |
|
| 14 |
张灿, 胡冬冬, 叶蕾, 等. 2017年国外高超声速飞行器技术发展综述[J]. 战术导弹技术, 2018(1): 47- 50.
|
| 15 |
齐伟呈, 程思野, 李堃. 高超声速飞行器及推进系统研究进展[J]. 科技创新与应用, 2022, 12(31): 18- 21.
|
| 16 |
郭宇辰. SR-72高超声速无人侦察机三维重建及其气动特性分析[D]. 南京: 南京航空航天大学, 2016.
GUO Y C. Three-dimensional reconstruction and analysis of aerodynamic of SR-72 hypersonic unmanned reconnaissance aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
|
| 17 |
MIYAGI H, KIMURA H, CABE J, et al. Combined cycle engine research in Japanese HYPR program[C]// 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, USA: American Institute of Aeronautics and Astronautics, 1998: 3278.
|
| 18 |
罗佳茂, 杨顺华, 母忠强, 等. 预冷型组合循环发动机技术[J]. 空气动力学学报, 2022, 40(1): 190- 207.
|
| 19 |
谭米, 马薏文, 苗辉. 反应发动机公司破产: SABRE发动机发展停滞[J]. 航空动力, 2024(6): 25- 27.
|
| 20 |
丁海鹏, 吕郑, 田轲, 等. 三维并联涡轮基组合循环排气系统设计与性能分析[J]. 航空学报, 2025, 46(15): 60- 74.
|
| 21 |
马涛. 宽域内收缩进气道一体化设计的关键技术研究[D]. 南京: 南京航空航天大学, 2018.
MA T. Investigation on the key technologies of wide-range inward turning inlet and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
|
| 22 |
HUIHUI H, HUANG G, FENGYUAN Z, et al. CFD simulation of TBCC inlet based on internal waverider concept[C]// 21st AIAA International Space Planes and Hypersonics Technologies Conference. Xiamen, China: American Institute of Aeronautics and Astronautics, 2017: 2354.
|
| 23 |
朱伟, 王霄, 华正旭, 等. 马赫数范围为0~4混合并联二元弯曲压缩进气道设计及试验研究[J]. 航空动力学报, 2023, 38(9): 2271- 2278.
|
| 24 |
张辰琳, 于健, 朱伟, 等. Ma 4内并联TBCC发动机匹配设计与模态转换性能分析[J]. 飞机设计, 2023, 43(5): 5- 10.
|
| 25 |
陈敏, 朱之丽, 朱大明, 等. 涡轮/冲压组合发动机性能分析工具(英文)[J]. 宇航学报, 2006(5): 854- 859.
|
| 26 |
CHEN M, ZHU Z L, TANG H L, et al. Mode transition study of turbine-based combined cycle engine concepts[C]// 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, USA: American Institute of Aeronautics and Astronautics, 2007: 5347.
|
| 27 |
|
| 28 |
刘利军, 林君健, 余臻, 等. TBCC发动机控制技术的发展[J]. 航空动力, 2024(3): 52- 55.
|
| 29 |
YU H F, GUO Y Q. Modeling and simulation of parallel TBCC aircraft/engine integrated system[C]// 2020 39th Chinese Control Conference (CCC). Shenyang, China: IEEE Press, 2020: 6899-6903.
|
| 30 |
王占学, 张明阳, 张晓博, 等. 变循环涡扇冲压组合发动机发展现状及关键技术分析[J]. 推进技术, 2020, 41(9): 1921- 1934.
|
| 31 |
HUI Y, JUN M, MAN Y J, et al. Numerical simulation of variable-geometry inlet for TRRE combined cycle engine[C]// 21st AIAA International Space Planes and Hypersonics Technologies Conference. Xiamen, China: American Institute of Aeronautics and Astronautics, 2017: 2437.
|
| 32 |
WEI B X, LING W H, LUO F T, et al. Propulsion performance research and status of TRRE engine experiment[C]// 21st AIAA International Space Planes and Hypersonics Technologies Conference. Xiamen, China: American Institute of Aeronautics and Astronautics, 2017: 2351.
|
| 33 |
朱永志, 匡正, 母忠强, 等. 一种宽速域二元曲面压缩可调进气道设计[J]. 固体火箭技术, 2025, 48(5): 763- 771.
|
| 34 |
李程鸿, 谭慧俊, 宁乐, 等. 前体激波系重构技术及其在高超声速进气道上的应用[J]. 航空动力学报, 2016, 31(9): 2164- 2170.
|
| 35 |
|
| 36 |
吴孟君. TBCC弯曲激波压缩可调进气道优化设计研究[D]. 南京: 南京理工大学, 2019.
WU M J. Optimization design research on TBCC bending shock compression adjustable intake duct[D]. Nanjing : Nanjing University of Science and Technology, 2019. (in Chinese)
|
| 37 |
王子运, 薛洪超, 张健, 等. 宽域飞行器进气道内激波/边界层干扰控制技术的新进展[J]. 航空动力, 2025(3): 75- 78.
|
| 38 |
张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术, 2020, 41(2): 241- 259.
|
| 39 |
程代姝, 张悦. 唇罩激波/边界层干扰的壁面鼓包/次流循环组合控制方法研究[J]. 推进技术, 2018, 39(8): 1744- 1752.
|
| 40 |
金毅, 谭慧俊, 张豪. 边界层泄流参数对进气道喘振特性影响的试验研究[C]// 第十二届全国流体力学学术会议摘要集. 西安, 中国: 中国力学学会流体力学专业委员会, 2022: 841.
JIN Y, TAN H J, ZHANG H. Experimental study on the influence of boundary layer leakage parameters on inlet surge characteristics[C]// Summary Collection of the 12th National Conference on Fluid Mechanics. Xi'an, China: Chinese Society of Mechanics, Fluid Mechanics Professional Committee, 2022: 841. (in Chinese)
|
| 41 |
郭赟杰, 谭慧俊, 张悦, 等. 基于壁面鼓包的泄流控制激波/边界层干扰研究[C]// 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集: 发动机内流气动技术. 大连, 中国: 中国航天科工集团有限公司, 2017: 226-237.
GUO Y J, TAN H J, ZHANG Y, et al. Research on shock wave/boundary layer interference in discharge control based on wall bulging[C]// Proceedings of the 38th Technical Exchange Conference and the 2nd Aerospace Power Joint Conference of China Aerospace Third Professional Information Network-Engine Internal Flow Aerodynamics Technology. Dalian, China: China Aerospace Science and Industry Corporation. 2017: 226-237. (in Chinese)
|
| 42 |
王卫星, 刘佳思, 刘精彩, 等. 基于涡流发生器的内转式进气道流场组织研究[J]. 推进技术, 2024, 45(11): 30- 45.
|
| 43 |
胡万林, 于剑, 刘宏康, 等. 叶片式涡流发生器对压缩拐角流动分离的控制[J]. 航空学报, 2018, 39(7): 122- 130.
|
| 44 |
张悦, 高婉宁, 程代姝. 基于记忆合金的可变形涡流发生器控制唇罩激波/边界层干扰研究[J]. 推进技术, 2018, 39(12): 2755- 2763.
|
| 45 |
王梦格, 何小明, 王娟娟, 等. 基于振荡式涡流发生器的激波/边界层干扰控制方法[J]. 航空学报, 2023, 44(20): 204- 219.
|
| 46 |
|
| 47 |
谢玮, 胡国暾, 石伟, 等. 基于等离子体合成射流的高超声速飞行器标模激波控制实验[J]. 气体物理, 2024, 9(5): 1- 10.
|
| 48 |
苏纬仪, 张堃元, 金志光. 高超声速进气道附面层分离无源被动控制[J]. 推进技术, 2011, 32(4): 455- 460.
|
| 49 |
郑晓刚, 施崇广, 张加乐, 等. 高超声速三维内转进气道研究进展综述[J]. 航空学报, 2025, 46(8): 60- 98.
|
| 50 |
|
| 51 |
|
| 52 |
COLVILLE J, LEWIS M. An aerodynamic redesign of the SR-71 inlet with applications to turbine based combined cycle engines[C]// 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, USA: American Institute of Aeronautics and Astronautics, 2004: 3481.
|
| 53 |
王昌盛, 额日其太, 丁文豪. 高超声速轴对称进气道多目标优化设计[J]. 航空动力学报, 2020, 35(7): 1392- 1401.
|
| 54 |
郭金默, 谢旅荣, 李晓驰, 等. 一种锯齿状唇口超声速轴对称进气道特性[J]. 航空动力学报, 2021, 36(2): 264- 274.
|
| 55 |
宁啸天, 辜天来, 田亚洲, 等. 一种轴对称变几何进气道气动设计及性能分析[J]. 固体火箭技术, 2021, 44(6): 783- 792.
|
| 56 |
胡声超, 鲍福廷, 赵瑜. 外压式二元与轴对称进气道设计及性能对比[J]. 科学技术与工程, 2011, 11(31): 7746- 7749.
|
| 57 |
|
| 58 |
|
| 59 |
MALO-MOLINA F, GAITONDE D, KUTSCHENREUTER P. Numerical investigation of an innovative inward turning inlet[C]// 17th AIAA Computational Fluid Dynamics Conference. Toronto, Canada: American Institute of Aeronautics and Astronautics, 2002: 4871.
|
| 60 |
MALO-MOLINA F, EBRAHIMI H, RUFFIN S. Analysis of an innovative inward turning inlet using an Air-JP8 combustion mixture at Mach 7[C]// 36th AIAA Fluid Dynamics Conference and Exhibit. San Francisco, USA: American Institute of Aeronautics and Astronautics, 2006: 3041.
|
| 61 |
左逢源. 内转式TBCC组合动力进气道设计方法研究进展[J]. 清华大学学报(自然科学版), 2022, 62(3): 555- 561.
|
| 62 |
|
| 63 |
左逢源, 黄国平, 陈杰, 等. 基于内乘波概念的TBCC进气道过渡模态研究[J]. 工程热物理学报, 2015, 36(2): 274- 278.
|
| 64 |
|
| 65 |
邬凤林. 宽范围可调内转进气道设计方法研究[D]. 南京: 南京理工大学, 2017.
WU F L. Research on design methods for wide-range adjustable inward-turning inlet ducts[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
|
| 66 |
刘愿, 钱战森, 向先宏. 外并联式TBCC进气道模态转换风洞试验及模型典型影响因素分析[J]. 实验流体力学, 2019, 33(5): 18- 27.
|
| 67 |
SANDERS B W, WEIR L J. Aerodynamic design of a dual-flow Mach 7 hypersonic inlet system for a turbine-based combined-cycle hypersonic propulsion system[R]. Cleveland: Glenn Research Center, 2008.
|
| 68 |
|
| 69 |
王子运, 于航, 张悦, 等. 空天飞行器可调进气系统关键问题研究进展[J]. 航空学报, 2024, 45(11): 21- 57.
|
| 70 |
赵春梅, 王恒, 王俊, 等. 涡轮冲压组合喷管运动机构布局研究综述[J]. 航空发动机, 2024, 50(6): 13- 18.
|
| 71 |
何墨凡, 李宪开, 尹超, 等. 一种内转式TBCC进气道气动设计及分析[J]. 飞机设计, 2021, 41(4): 56- 64.
|
| 72 |
潘鹏宇. 二元变几何TBCC进气道气动性能研究及风洞试验[D]. 南京: 南京航空航天大学, 2020.
PAN P Y. Aerodynamic performance research and wind tunnel test of two-dimensional and variable geometry TBCC inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
|
| 73 |
|
| 74 |
唐琳. TBCC二元可调进气道模态转换流动特性研究[D]. 南京: 南京理工大学, 2018.
TANG L. Research on the flow characteristics of mode transition in a TBCC dual-mode adjustable inlet[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese)
|
| 75 |
|
| 76 |
乐婷, 黄国平, 黄慧慧. 内乘波式内并联TBCC进气道变几何规律优化分析[J]. 工程热物理学报, 2017, 38(12): 2583- 2587.
|
| 77 |
|
| 78 |
张悦, 谭慧俊, 李博, 等. 基于柔性中心体的轴对称可调超声速进气道的设计方法: 201710461647.8[P]. 2018-07-31.
ZHANG Y, TAN H J, LI B, et al. Design method of axisymmetric adjustable supersonic inlet based on flexible center body: 201710461647.8[P]. 2018-07-31. (in Chinese)
|
| 79 |
陈逖. 高超声速进气道内激波/边界层干扰及射流式涡流发生器的流动控制方法研究[D]. 长沙: 国防科学技术大学, 2014.
CHEN T. Research on shock wave/boundary layer interference and flow control method of jet vortex generator in hypersonic inlet[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
|
| 80 |
谭慧俊, 陈智, 李光胜. 基于激波形状控制的定几何高超声速可调进气道概念及初步验证[J]. 中国科学(E辑: 技术科学), 2007(11): 1469- 1479.
|
| 81 |
金志光, 张堃元, 刘媛. 一种定几何高超声速进气道自适应泄压控制概念与试验验证[J]. 空气动力学学报, 2014, 32(4): 475- 480.
|
| 82 |
陈皓宇, 黄河峡, 谭慧俊. 放气槽布局形式及开槽角度对二元高超声速进气道性能的影响[J]. 气体物理, 2023, 8(2): 24- 31.
|
| 83 |
CSANK J, STUEBER T. A turbine based combined cycle engine inlet model and mode transition simulation based on HiTECC tool[C]// 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, USA: American Institute of Aeronautics and Astronautics, 2012: 4149.
|
| 84 |
CSANK J, STUEBER T. Advanced shock position control for mode transition in a turbine based combined cycle engine inlet model[R]. Cleveland: Glenn Research Center, 2013.
|
| 85 |
刘君, 袁化成, 张锦昇, 等. 组合动力进气道模态转换分流模式及分流策略[J]. 航空动力学报, 2025, 40(8): 115- 126.
|
| 86 |
ALBERTSON C, EMAMI S, TREXLER C. Mach 4 test results of a dual-flowpath, turbine based combined cycle inlet[C]// 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia: American Institute of Aeronautics and Astronautics, 2006: 8138.
|
| 87 |
卢杰, 袁化成, 王颖昕, 等. 一种外并联式TBCC变几何进气道的设计[J]. 固体火箭技术, 2019, 42(1): 119- 127.
|
| 88 |
李龙, 李博, 梁德旺, 等. 涡轮基组合循环发动机并联式进气道的气动特性[J]. 推进技术, 2008, 29(6): 667- 672.
|
| 89 |
张华军, 郭荣伟, 谢旅荣. 内并联型TBCC进气道方案设计及验证[J]. 航空动力学报, 2012, 27(11): 2475- 2483.
|
| 90 |
刘君, 袁化成, 郭荣伟. 内并联式TBCC进气道模态转换过程流动特性分析[J]. 宇航学报, 2016, 37(4): 461- 469.
|
| 91 |
CLEM M, WOIKE M, SAUNDERS J. Background-oriented schlieren used in a hypersonic inlet test at NASA GRC[EB/OL]. (2017-02-22)[2025-12-06]. https://ntrs.nasa.gov/citations/20170001727.
|
| 92 |
吴广伟. TBCC进气道模态转换过程流场特性及识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2025.
WU G W. Research on flow field characteristics and identification methods of TBCC inlet modal conversion process[D]. Harbin : Harbin Institute of Technology, 2025. (in Chinese)
|
| 93 |
闵浩, 孙波, 李嘉新, 等. 一种内并联型内转进气道通道间干扰特性研究[J]. 推进技术, 2018, 39(12): 2695- 2702.
|
| 94 |
赵家辉, 杨顺华, 母忠强, 等. 内并联型进气道模态转换过程中流动三维特性分析[C]// 第十二届全国流体力学学术会议摘要集. 西安, 中国: 中国力学学会流体力学专业委员会, 2022: 659.
ZHAO J H, YANG S H, MU Z Q, et al. Analysis of three-dimensional flow characteristics during mode transition in an internal parallel intake[C]// 12th National Conference on Fluid Mechanics. Xi'an, China: Fluid Mechanics Committee of the Chinese Society of Mechanics, 2022: 659. (in Chinese)
|
| 95 |
赵家辉, 杨顺华, 游进, 等. 双通道内并联式进气道模态转换过程流动特性分析[J]. 航空动力学报, 2023, 38(1): 173- 183.
|
| 96 |
徐思远, 朱之丽, 刘振德, 等. 革新涡轮加速器模态转换特性研究[J]. 推进技术, 2020, 41(3): 516- 526.
|
| 97 |
|
| 98 |
FOSTER L, SAUNDERS J, SANDERS B, et al. Highlights from a Mach 4 experimental demonstration of inlet mode transition for turbine-based combined cycle hypersonic propulsion[C]// 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, USA: American Institute of Aeronautics and Astronautics, 2012: 4143.
|
| 99 |
林阿强, 郑群, 吴锋, 等. 航空涡轮发动机射流预冷技术研究[J]. 推进技术, 2020, 41(4): 721- 728.
|
| 100 |
张彦军, 刘太秋, 扈鹏飞, 等. 适应飞机需求的进气预冷技术路线分析[J]. 航空发动机, 2024, 50(2): 58- 64.
|
| 101 |
罗佳茂, 杨顺华, 张建强, 等. 换热预冷发动机预冷特性和发动机性能数值研究[J]. 航空学报, 2019, 40(5): 111- 123.
|
| 102 |
KOBAYASHI H, TAGUCHI H, KOJIMA T, et al. Performance analysis of Mach 5 hypersonic turbojet developed in JAXA[C]// 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Tours, France: American Institute of Aeronautics and Astronautics, 2012: 5839.
|
| 103 |
邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机, 2021, 47(4): 8- 21.
|
| 104 |
|
| 105 |
|
| 106 |
|
| 107 |
刘瑶, 谭建国, 张冬冬, 等. 旋流组合稳焰的宽范围亚燃冲压燃烧室性能研究[J]. 推进技术, 2024, 45(9): 88- 98.
|
| 108 |
张旭, 张启帆, 岳连捷, 等. 高马赫数燃烧强化的激波风洞试验研究[J]. 力学学报, 2022, 54(5): 1403- 1413.
|
| 109 |
何国强, 秦飞, 魏祥庚, 等. 超宽速域复杂波系中鲁棒点火与释热调控技术[R]. 西安: 西北工业大学, 2020.
HE G Q, QIN F, WEI X G, et al. Robust ignition and heat release control technology in complex wave systems with ultra wide velocity domain[R]. Xi'an: Northwestern Polytechnical University, 2020. (in Chinese)
|
| 110 |
|
| 111 |
师迎晨, 张任帅, 计自飞, 等. 高速飞行器的连续旋转爆震推进技术[J]. 空气动力学学报, 2022, 40(1): 101- 113.
|
| 112 |
计自飞, 李天琦, 张会强. 吸气式旋转爆震组合循环发动机性能[J]. 火箭推进, 2021, 47(6): 86- 92.
|
| 113 |
计自飞, 张会强, 谢峤峰, 等. 连续旋转爆震涡轮发动机热力过程与性能分析[J]. 清华大学学报(自然科学版), 2018, 58(10): 899- 905.
|
| 114 |
|
| 115 |
|
| 116 |
BULMAN M, SIEBENHAAR A. The rebirth of round hypersonic propulsion[C]// 42nd AIAA / ASME / SAE / ASEE Joint Propulsion Conference & Exhibit. Sacramento, USA: American Institute of Aeronautics and Astronautics, 2006: 5035.
|
| 117 |
于海顺, 宋文艳, 张志强. 超燃冲压发动机进气道低马赫数起动性能研究[J]. 航空工程进展, 2011, 2(4): 459- 464.
|
| 118 |
纪鉴恒, 蔡尊, 王泰宇, 等. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 028696.
|
| 119 |
|
| 120 |
邓维鑫. 宽范围马赫数超燃冲压发动机燃烧组织技术研究[D]. 成都: 西南交通大学, 2013.
DENG W X. Research on combustion organizing technology of scramjet in wide range Mach number[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
|
| 121 |
BULMAN M, SIEBENHAAR A. Combined cycle propulsion: Aerojet innovations for practical hypersonic vehicles[C]// 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco, USA: American Institute of Aeronautics and Astronautics, 2011: 2397.
|
| 122 |
SIEBENHAAR A, BOGAR T. Integration and vehicle performance assessment of the aerojet "TriJet" combined-cycle engine[C]// 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany: American Institute of Aeronautics and Astronautics, 2009: 7420.
|
| 123 |
刘增旭, 俞凯凯, 付珂欣, 等. 宽空域、宽速域排气系统设计及流场特性研究[J/OL]. 北京航空航天大学学报. (2024-12-27)[2025-12-06]. https://doi.org/10.13700/j.bh.1001-5965.2024.0781.
LIU Z X, YU K K, FU K X, et al. Design and flow characteristics research of exhaust systems with wide altitude and speed ranges[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. (2024-12-27)[2025-12-06]. https://doi.org/10.13700/j.bh.1001-5965.2024.0781. (in Chinese)
|
| 124 |
张可心, 黄河峡, 谭慧俊. 基于TBCC进排气一体化的引射喷管气动设计研究[J]. 航空动力学报, 2025, 40(6): 391- 404.
|
| 125 |
王成鹏, 郝晨光, 李昊, 等. 最小熵增准则在激波/边界层干扰分析中的应用[J]. 航空学报, 2025, 46(8): 99- 118.
|
| 126 |
孙波, 卓长飞. 内流激波边界层干扰非对称特性研究综述[J]. 气动研究与试验, 2024, 2(3): 52- 59.
|
| 127 |
WRIGHT H. National aero-space plane technology development overview[C]// National Aerospace Plane Conference. Dayton, USA: American Institute of Aeronautics and Astronautics, 1989: 5003.
|
| 128 |
|
| 129 |
MCCLINTON C, RAUSCH D, SITZ J, et al. Hyper-X program status[C]// 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Kyoto, Japan: American Institute of Aeronautics and Astronautics, 2001: 1910.
|
| 130 |
HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]// 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, USA: American Institute of Aeronautics and Astronautics, 2008: 2540.
|
| 131 |
DAMIRA S, MARATHE A, SUDHAKAR K, et al. Parametric optimization of single expansion ramp nozzle (SERN)[C]// 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, USA: American Institute of Aeronautics and Astronautics, 2006: 5188.
|
| 132 |
|
| 133 |
宋光韬, 葛建辉, 马钊, 等. 并联TBCC排气系统稳态与模态转换实验研究[J]. 推进技术, 2024, 45(4): 51- 61.
|
| 134 |
|
| 135 |
|
| 136 |
彭波, 徐惊雷. 水平并联TBCC冲压喷管调节方案设计及性能研究[J]. 机械制造与自动化, 2022, 51(6): 202- 207.
|
| 137 |
WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X-a reusable hypersonic test bed[C]// 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, USA: American Institute of Aeronautics and Astronautics, 2008: 2544.
|
| 138 |
LU X, YUE L J, XIAO Y B, et al. Design of scramjet nozzle employing streamline tracing technique[C]// 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston, USA: AIAA, 2009: 7248.
|
| 139 |
花文达, 徐惊雷. 三维并联式TBCC发动机排气系统设计与实验[J]. 航空动力学报, 2018, 33(9): 2268- 2277.
|
| 140 |
|
| 141 |
|
| 142 |
HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[EB/OL]. (1994-01-01)[2025-09-15]. https://arc.aiaa.org/doi/book/10.2514/4.470356.
|
| 143 |
|
| 144 |
武子裕, 魏祥庚, 王欢欢, 等. 形状记忆合金在可调进排气系统中的应用[J]. 空天技术, 2025(2): 64- 77.
|
| 145 |
|
| 146 |
韦宇卿. 考虑飞/发性能的变几何冲压发动机尾喷管匹配特性分析[D]. 厦门: 厦门大学, 2025.
WEI Y Q. Analysis of tail nozzle matching characteristics of variable geometry ramjet engine considering flight/engine performance[D]. Xiamen: Xiamen University, 2025. (in Chinese)
|
| 147 |
李源. Ma 0-8 TRRE排气系统设计与性能研究[D]. 南京: 南京航空航天大学, 2025.
LI Y. Design and Performance Study of Ma 0-8 TRRE Exhaust System[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2025. (in Chinese)
|
| 148 |
汪丰, 徐惊雷, 汪阳生. 并联式TBCC排气系统模态转换过程的流场特性研究[J]. 实验流体力学, 2019, 33(3): 68- 75.
|
| 149 |
|
| 150 |
TZONG G, JACOBS R E, LIGUORE S. Air vehicle integration and technology research (aviatr) task order 0015: Predictive capability for hypersonic structural response and life prediction: Phase 1-identification of knowledge gaps, volume 1: Nonproprietary version[C]// Conference on Hypersonic Technology. Washington D.C., USA: 2010.
|
| 151 |
李文杰. 从研发项目看美国高超声速飞机发展策略[J]. 战术导弹技术, 2023(5): 59- 63.
|
| 152 |
ELVIN J D. Integrated inward turning inlets and nozzles for hypersonic air vehicles: US7866599B2[P]. 2011-01-11.
|
| 153 |
WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X-a reusable hypersonic test bed[C]// 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, USA: American Institute of Aeronautics and Astronautics, 2008: 2544.
|
| 154 |
陈召斌, 廖孟豪, 李飞, 等. 高超声速飞机总体气动布局设计特点分析[J]. 航空科学技术, 2022, 33(2): 6- 11.
|
| 155 |
马娜, 门薇薇, 王志强, 等. SR-72高超声速飞机研制分析[J]. 飞航导弹, 2017(1): 14- 20.
|
| 156 |
GAMBLE E, HAID D, D'ALESSANDRO S, et al. Dual-mode scramjet performance model for TBCC simulation[C]// 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver, USA: American Institute of Aeronautics and Astronautics, 2009: 5298.
|
| 157 |
GAMBLE E, HAID D, D'ALESSANDRO S. Hydraulic and kinematic system model for TBCC dynamic simulation[C]// 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, USA: American Institute of Aeronautics and Astronautics, 2010: 6641.
|
| 158 |
GAMBLE E, HAID D, D'ALESSANDRO S. Thermal management and fuel system model for TBCC dynamic simulation[C]// 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, USA: American Institute of Aeronautics and Astronautics, 2010: 6642.
|
| 159 |
LE D, VRNAK D, SLATER J, et al. A framework for simulating turbine-based combined-cycle inlet mode-transition[C]// 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, USA: American Institute of Aeronautics and Astronautics, 2012: 4144.
|
| 160 |
王艺超, 王晨, 杜宪, 等. TRRE发动机模态转换过程的进/ 发匹配闭环主动抗扰控制[J]. 推进技术, 2025, 46(5): 250- 261.
|
| 161 |
|
| 162 |
|
| 163 |
马婧雪. 含安全边界的TBCC组合发动机控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
MA J X. Control study for over-under TBCC engine with safety boundaries[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
|
| 164 |
STUEBER T J, SAUNDERS D. Overview of CCE-LIMX testing[R/OL]. (2012-03-13)[2025-09-15]. https://ntrs.nasa.gov/api/citations/20150010168/downloads/20150010168.pdf.
|
| 165 |
REDDY D R, SCHMIDT G. State of the NASA aeropropulsion discipline input from the glenn research center[C]// NESC Propulsion Technical Discipline Team (TDT) Face-to-Face Meeting. Huntsville, USA: NASA Marshall Space Flight Center, 2017: 4517.
|
| 166 |
THOMAS R, STUEBER T J. Combined cycle engine large-scale inlet for mode transition experiments: System identification rack hardware design[R]. Cleveland: Glenn Research Center, 2013.
|
| 167 |
THOMAS R, STUEBER T J, VRNAK D R. Combined cycle engine large-scale inlet for mode transition studies: System identification rack software design[R/OL]. (2020-12-10)[2025-09-15]. https://ntrs.nasa.gov/citations/20205011417.
|
| 168 |
李俊杰, 胡秋晨, 刘鹏超, 等. TBCC发动机的典型方案及试验技术发展分析[J]. 火箭推进, 2022, 48(6): 26- 34.
|
| 169 |
钟萍. 国外高超声速飞行加速地面模拟能力研究进展[C]// 第八届全国高超声速科技学术会议论文摘要集. 哈尔滨, 中国: 中国力学学会, 2025: 6-7.
ZHONG P. Progress in research on ground-based simulation capabilities for hypersonic flight acceleration abroad[C]// 8th National Academic Conference on Hypersonic Science and Technology. Harbin, China: Chinese Society of Theoretical and Applied Mechanics, 2015: 6-7. (in Chinese)
|
| 170 |
陈晓清. 美军高超声速飞机组合动力技术进展分析[J]. 飞航导弹, 2021(5): 17- 20.
|
/
| 〈 |
|
〉 |