TCAM-efficient flow table mapping scheme for OpenFlow multiple-table pipelines

Zhongjin LIU,Yong LI,Li SU,Depeng JIN,Lieguang ZENG

Journal of Tsinghua University(Science and Technology) ›› 2014, Vol. 54 ›› Issue (4) : 437-442.

PDF(1288 KB)
PDF(1288 KB)
Journal of Tsinghua University(Science and Technology) ›› 2014, Vol. 54 ›› Issue (4) : 437-442.
Orginal Article

TCAM-efficient flow table mapping scheme for OpenFlow multiple-table pipelines

Author information +
History +

Abstract

Flow-table based forwarding enables flexibility on the OpenFlow data plane. However, expanding the network functions results in explosive growth of the flow table size, so that it can not be stored in the limited TCAM in the switches, so the storage becomes a network bottleneck. This paper describes an OpenFlow multiple-table pipeline architecture that efficiently stores the flow table in the TCAM memories with an algorithm that maps a flow table to multiple tables for storage and look up. Simulations show that the algorithm reduces the TCAM usage for single table storage by 17%-95%, which is important for scalable designs of OpenFlow data planes.

Key words

OpenFlow / data plane / multiple flow tables / ternary content addressable memory

Cite this article

Download Citations
Zhongjin LIU,Yong LI,Li SU,Depeng JIN,Lieguang ZENG. TCAM-efficient flow table mapping scheme for OpenFlow multiple-table pipelines[J]. Journal of Tsinghua University(Science and Technology). 2014, 54(4): 437-442

References

[1] McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(5): 862-876.
[2] Open Networking Summit. OpenFlow Specification [Z/OL]. [2014-01-26]. http://www.openflow.org/.
[3] Intel Corporation. Intel FM 6700 Fulcrum Switch [Z/OL]. [2014-01-26]. http://www.fulcrummicro.com/.
[4] Huawei Corporation. Huawei SN 640 Switch [Z/OL]. [2014-01-26]. http://www.huawei.com/.
[5] MA Y, Banerjee S. A smart pre-classifier to reduce power consumption of TCAMs for multi-dimensional packet classification[J]. ACM SIGCOMM Computer Communication Review, 2012, 42(4): 335-346.
[6] Gupta P, Mckeown N. Packet classification on multiple fields[J]. ACM SIGCOMM Computer Communication Review 1999, 29(4): 147-160.
[7] Ferkouss O E, Snaiki I, Mounaouar O, et al.A 100 gig network processor platform for OpenFlow [C]// Proc 7th International Conference on Network and Service Management (CNSM). NJ: IEEE Press, 2011: 1-4.
[8] Ferkouss O E, Ben Ali R, Lemieux Y, et al.Performance model for mapping processing tasks to OpenFlow switch resources [C]// Proc IEEE International Conference on Communications (ICC). NJ: IEEE Press, 2012: 1476-1481.
[9] Bremler-Barr A, Hendler D. Space-efficient TCAM-based classification using gray coding[J]. IEEE Transactions on Computers, 2012, 61(1): 18-30.
[10] Bremler-Barr A, Hay D, Hendler D. Layered interval codes for TCAM-based classification[J]. Computer Networks, 2012, 56(13): 3023-3039.
[11] Huang N F, Chen K B, Chen W E. Fast and scalable multi-TCAM classification engine for wide policy table lookup [C]// Proc Advanced Information Networking and Applications, Taiwan: IEEE press, 2005, 1: 792-797.
[12] Ahmed O, Areibi S, Grewal G. Hardware accelerators targeting a novel group based packet classification algorithm[J]. International Journal of Reconfigurable Computing, 2013, 1(3): 1-34.
[13] Renesas Corporation. 20 Mbit QUAD-Search Content Addressable Memory [Z/OL]. [2013-07-18]. http://www.renesas.com/products
[14] Taylor D E, Turner J S. Classbench: a packet classification benchmark[J]. IEEE/ACM Transactions on Networking, 15(3), 2007, 499-511
PDF(1288 KB)

Accesses

Citation

Detail

Sections
Recommended

/