Influence of the boundary conditions on aorta blood flow simulations

Xinrong CAO,Jie WANG,Rongpin WANG,Xianwen ZHANG,Jintian TANG

Journal of Tsinghua University(Science and Technology) ›› 2014, Vol. 54 ›› Issue (6) : 700-705.

PDF(2190 KB)
PDF(2190 KB)
Journal of Tsinghua University(Science and Technology) ›› 2014, Vol. 54 ›› Issue (6) : 700-705.
Orginal Article

Influence of the boundary conditions on aorta blood flow simulations

Author information +
History +

Abstract

Simulations of blood flows in the aorta area provide a better understanding of the hemodynamic blood flow mechanism for evaluating the risk of some cardiovascular diseases. An aorta model was reconstructed from magnetic resonance imaging (MRI) images while the blood flow and hemodynamic parameters in the ascending aorta, the descending aorta and the main peripheral arteries were measured using phase contrast MRI (PC-MRI). The boundary conditions affected the flow rate, wall shear stress, averaged wall shear stress and the oscillating shear index. The results show that simulations with zero pressure outlets, simulations with fitted input flows and zero pressure outlets, and simulations with fitted input flow and outflow discharges give quite different results. The input flow variations are mainly related to the local and average wall shear stresses and the oscillating shear index. The outlet flows are strongly related to the outlet boundary conditions.

Key words

computational fluid dynamics / aorta / phase contrast magnetic resonance imaging (PC-MRI) / averaged wall shear stress / oscillating shear index

Cite this article

Download Citations
Xinrong CAO,Jie WANG,Rongpin WANG,Xianwen ZHANG,Jintian TANG. Influence of the boundary conditions on aorta blood flow simulations[J]. Journal of Tsinghua University(Science and Technology). 2014, 54(6): 700-705

References

[1] Buchanan J, Kleinstreuer C, Hyun S, et al.Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta[J]. Journal of Biomechanics, 2003, 36(8): 1185-1196.
[2] 付文宇, 乔爱科. 基于 CT 图像的胸主动脉瘤模型数值模拟[J]. 科技导报, 2009, 27(20): 27-31. FU Wenyu, QIAO Aike. Numerical simulation of human thoracic aorta based on CT images[J]. Sciense & Technology Revew, 2009, 27(20): 27-31. (in Chinese)
[3] Ku D N, Giddens D P, Zarins C K, et al.Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low oscillating shear stress[J]. Arteriosclerosis, Thrombosis and Vascular Biology, 1985, 5(3): 293-302.
[4] Soulis J V, Fytanidis D K, Papaioannou V C et al. Oscillating shear index, wall shear stress and low density lipoprotein accumulation in human RCAs [C]// 3rd Micro and Nano Flows Conference. Thessaloniki, Greece, 2011: 22-24.
[5] Caro C, Fitz-Gerald J, Schroter R. Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis[J]Proceedings of the Royal Society of London. Series B: Biological Sciences, 1971, 177(1046): 109-133.
[6] 向亚菲, 李功文, 汤敬东, 等. 人胸主动脉血液流动的三维数值分析 [J]. 同济大学学报: 医学版, 2010, 31(4): 19-23. XIANG Yafei, LI Gongwen, TANG Jingdong, et al.Three-dimensional simulation of blood flow in human thoracic aorta[J]. Journal of Tongji University: Medical Science, 2010, 31(4): 19-23. (in Chinese)
[7] 杨金有, 俞航, 单晶心, 等. 基于计算流体力学方法进行不同个体的主动脉弓内血流模拟对比分析[J]. 中国医学物理学杂志, 2010, 27(4): 2059-2062. YANG Jinyou, YU Hang, SHAN Jingxin, et al.Comparative analysis of different individuals of the aortic arch blood flow simulation based on computational fluid dynamics methods[J]. Chinese Journal of Medical Physics, 2010, 27(4): 2059-2062. (in Chinese)
[8] Shahcheraghi N, Dwyer H A, Cheer A Y, et al.Unsteady and three-dimensional simulation of blood flow in the human aortic arch[J]. Journal of Biomechanical Engineering, 2002, 124(4): 378-387.
[9] Fytanidis D K, Soulis J V, Papaioannou V C, et al.Oscillatory flow in human arteries [C]// 2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB). Hong Kong, China, 2010: 1-4.
[10] 王荣品, 梁长虹, 黄美萍, 等. 3.0T MR 相位对比法测量正常人肺、 体循环血流[J]. 中国医学影像技术, 2011, 27(1): 61-65. WANG Rongpin, LIANG Changhong, HUANG Meiping, et al.Quantitative measurement of hemodynamics of pulmonary and systemic circulation in healthy volunteers with phase-contrast MR imaging on 3.0T system[J]. Chinese Journal of Medical Imaging Technology, 2011, 27(1): 61-65. (in Chinese)
[11] Wang R P, Liang C H, Huang M P, et al. Assessment of aortopulmonary collateral flow and pulmonary vascular growth using a 3.0T magnetic resonance imaging system in patients who underwent bidirectional Glenn shunting[J]. European Journal of Cardio-Thoracic Surgery, 2012, 41(6): 146-153.
[12] Laganà K, Balossino R, Migliavacca F K, et al.Multiscale modeling of the cardiovascular system: Application to the study of pulmonary and coronary perfusions in the univentricular circulation[J]. Journal of Biomechanics, 2005, 38(5): 1129-1141.
[13] Gallo D, De Santis G, Negri F D, et al.On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: Implications for indicators of abnormal flow[J]. Annals of Biomedical Engineering, 2012, 40(3): 729-741.
[14] Mori D, Yamaguchi T. Computational fluid dynamics modeling and analysis of the effect of 3-D distortion of the human aortic arch[J]. Computer Methods in Biomechanics & Biomedical Engineering, 2002, 5(3): 249-260.
[15] 杨金有. 胸主动脉内血液流动的计算流体力学方法研究 [D]. 沈阳: 中国医科大学, 2010. YANG Jinyou. Computational Fluid Dynamics Method Analysis for Thoracic Aorta Blood Flow [D].Shenyang: Chinese Medical University, 2010. (in Chinese)
[16] McDonald D A. Blood Flow in Arteries[M]. Baltimore, MD: Williams & Wilkins Company, 1974.
PDF(2190 KB)

Accesses

Citation

Detail

Sections
Recommended

/