Mosaic designs for extending PET axial fields of view

CHENG Li, WEI Qingyang, XIA Yan, SHANG Hong, LIU Yaqiang, WU Chaoxia, MA Tianyu

Journal of Tsinghua University(Science and Technology) ›› 2015, Vol. 55 ›› Issue (12) : 1335-1341.

PDF(1190 KB)
PDF(1190 KB)
Journal of Tsinghua University(Science and Technology) ›› 2015, Vol. 55 ›› Issue (12) : 1335-1341. DOI: 10.16511/j.cnki.qhdxxb.2015.24.011
PHYSICS AND ENGINEERING PHYSICS

Mosaic designs for extending PET axial fields of view

  • {{article.zuoZhe_EN}}
Author information +
History +

Abstract

There positron emission tomography (PET) mosaic designs were developed from a traditional PET design based on GATE (Geant4 Application for Emission Tomography) simulations using axial sensitivity, volume sensitivity and spatial resolutions with various energy thresholds of 0 keV, 250 keV and 350 keV. The results indicate that without the effect of the energy threshold, the axial sensitivity of the mosaic designs is increased 24%-50%, while the volume sensitivity is increased 47%-62%. With an appropriate energy threshold (250 keV), the axial sensitivity is increased by 12% while the volume sensitivity is increased by 8% to give similar image quality as the traditional design.

Key words

positron emission tomography (PET) / mosaic designs / spatial resolution / energy threshold

Cite this article

Download Citations
CHENG Li, WEI Qingyang, XIA Yan, SHANG Hong, LIU Yaqiang, WU Chaoxia, MA Tianyu. Mosaic designs for extending PET axial fields of view[J]. Journal of Tsinghua University(Science and Technology). 2015, 55(12): 1335-1341 https://doi.org/10.16511/j.cnki.qhdxxb.2015.24.011

References

[1] MacDonald L R, Harrison R L, Alessio A M, et al. Effective count rates for PET scanners with reduced and extended axial field of view [J]. Physics in Medicine and Biology, 2011, 56(12): 3629-3643.
[2] Poon J K, MacDonald L R, Cherry S R, et al. A simulation study of a long axial field of view whole-body PET scanner using cylindrical and anthropomorphic phantoms [C]// Nuclear Science Symposium Conference Record. Dresden, Germany: IEEE, 2008: 4999-5006.
[3] Poon J K, Dahlbom M L, Moses W W, et al. Corrigendum: Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: A simulation study [J]. Physics in Medicine and Biology, 2012, 57(23): 4077-4094.
[4] Surti S, Lee E, Werner M, et al. Imaging study of a clinical PET scanner design using an optimal crystal thickness and scanner axial FOV [C]// Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Valencia, Spain: IEEE, 2011: 3390-3394.
[5] Surti S, Werner M E, Karp J S. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness [J]. Physics in Medicine and Biology, 2013, 58(12): 3995-4012.
[6] Yamaya T, Inaniwa T, Minohara S, et al. A proposal of an open PET geometry [J]. Physics in Medicine and Biology, 2008, 53(3): 757-773.
[7] Yamaya T, Yoshida E, Inaniwa T, et al. Development of a small prototype for a proof-of-concept of OpenPET imaging [J]. Physics in Medicine and Biology, 2011, 56(4): 1123-1137.
[8] Tashima H, Yamaya T, Yoshida E, et al. A single-ring OpenPET enabling PET imaging during radiotherapy [J]. Physics in Medicine and Biology, 2012, 57, 4705-4718.
[9] Yoshida E, Kinouchi S, Tashima H, et al. Developmentand performance evaluation of a single-ring OpenPET prototype [C]// Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Anaheim, USA: IEEE, 2012: 3125-3127.
[10] Jan S, Santin G, Strul D, et al. GATE: A simulation toolkit for PET and SPECT [J]. Physics in Medicine and Biology, 2004, 49(19): 4543-4561.
[11] Daubewitherspoon M E, Muehllehner G. Treatment of axial data in 3-dimensional PET [J]. Journal of Nuclear Medicine, 1987, 28(11): 1717-1724
[12] Defrise M, Kinahan P E, Townsend D W, et al. Exact and approximate rebinning algorithm for 3-D PET data [J]. IEEE Transaction on Medical Imaging, 1997, 16(2): 145-158.
PDF(1190 KB)

Accesses

Citation

Detail

Sections
Recommended

/