Decomposition analysis of CO2 emissions from road and rail transport systems
ZHANG Hongjun1,2, WANG Lining1,2, CHEN Wenying1,2
1. Research Center for Contemporary Management, Tsinghua University, Beijing 100084, China;
2. Institute of Energy, Environment and Economy, Beijing 100084, China
摘要为了探究公路与铁路交通CO2排放的影响因素及其贡献率,该文建立了基于贡献率的残值分配Laspeyres指数分解方法(contribution-based residual distribution Laspeyres index,CRDLI),并选取了中国和其他6个国家为研究对象,构建了公路与铁路CO2排放的二次分解模型。研究发现:周转量是影响各国公路与铁路CO2排放的重要因素,1991—2010年,中国、澳大利亚、德国、日本、印度、英国和美国换算周转量引起的CO2排放量变化分别为4.02、0.65、0.60、-0.12、2.33、0.24和4.84亿t;能耗强度和能源结构的改善是实现减缓CO2排放增长或减少CO2排放的重要途径;人均GDP的增长是推动公路与铁路周转量增长的最主要原因,降低周转量强度是减缓周转量上升进而减少CO2排放的重要途径。为了实现中国交通部门的低碳发展,需要发掘技术节能潜力、调整运输结构、有效管理运输需求。
Abstract:The road and rail transport sectors are important sources of CO2 emissions. A contribution-based residual distribution Laspeyres index (CRDLI) was developed to analyze the CO2 emissions from road and rail transport systems in China and six other countries. Transport turnover has an important influence on CO2 emissions, while energy intensity and energy structure are keys to mitigating CO2 emissions. GDP per capita is the main driver that increases transport turnover with reducing the turnover rate caused by GDP increases an important way to slow the increase in the transport turnover and further reduce CO2 emissions.
张宏钧, 王利宁, 陈文颖. 公路与铁路交通碳排放影响因素[J]. 清华大学学报(自然科学版), 2017, 57(4): 443-448.
ZHANG Hongjun, WANG Lining, CHEN Wenying. Decomposition analysis of CO2 emissions from road and rail transport systems. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 443-448.
IEA. CO<sub>2</sub> Emissions from Fuel Combustion[Z]. Paris: International Energy Agency, 2014.
[2]
Wei T. What STIRPAT tells about effects of population and affluence on the environment?[J]. Ecological Economics, 2011, 72(1725): 70-74.
[3]
张佳丽. 基于STIRPAT模型的我国二氧化碳排放研究[D]. 长沙: 湖南大学, 2011.ZHANG Jiali. Research on China's CO<sub>2</sub> Emission Based on STIRPAT Model[D]. Changsha: Hu'nan University, 2011. (in Chinese)
[4]
Ang B. Decomposition analysis for policymaking in energy: Which is the preferred method?[J]. Energy Policy, 2004, 32(9): 1131-1139.
[5]
Ang B. The LMDI approach to decomposition analysis: A practical guide[J]. Energy Policy, 2005, 33(7): 867-871.
[6]
Sun J. Changes in energy consumption and energy intensity: A complete decomposition model[J]. Energy Economics, 1998, 20(1): 85-100.
[7]
邢璐, 单葆国. 基于Kaya公式的中国CO<sub>2</sub>排放影响因素分解[J]. 能源技术经济, 2011, 23(10): 46-50.XING Lu, SHAN Baoguo. Empirical analysis of China's carbon emission based on Kaya identity and decomposition model[J]. Energy Technology and Economics, 2011, 23(10): 46-50. (in Chinese)
[8]
马丁, 陈文颖. 上海市低碳发展状况分析[J]. 中国人口·资源与环境, 2013, 23(8): 26-32.MA Ding, CHEN Wenying. Development status of low-carbon in Shanghai[J]. China Population, Resources and Environment, 2013, 23(8): 26-32. (in Chinese)
[9]
刘小艳. 交通运输业CO<sub>2</sub>排放因素分解及减排潜力研究[D]. 西安: 长安大学, 2013.LIU Xiaoyan. Study on the CO<sub>2</sub> Emissions Factor Decomposition and Reduction Potential of Transportation Industry[D]. Xi'an: Chang'an University, 2013. (in Chinese)
[10]
魏楚, 夏栋. 中国人均CO<sub>2</sub>排放分解: 一个跨国比较[J]. 管理评论, 2010, 22(8): 114-121.WEI Chu, XIA Dong. A decomposition analysis of per capita CO<sub>2</sub> emission of China: Based on cross-country comparison[J]. Management Review, 2010, 22(8): 114-121. (in Chinese)
[11]
Andreoni V, Galmarini S. European CO<sub>2</sub> emission trends: A decomposition analysis for water and aviation transport sectors[J]. Energy, 2012, 45(1): 595-602.
[12]
Wang L, Ma D, Chen W. A new improved decomposition model based on Laspeyres index: A case of CO<sub>2</sub> emission in China from 1996—2011[J]. Advanced Materials Research, 2013, 734(1): 1797-1803.
[13]
魏一鸣, 廖华. 中国能源报告(2010): 能源效率研究[M]. 北京: 科学出版社, 2010.WEI Yiming, LIAO Hua. China Energy Report (2010): Energy Efficiency Research[M]. Beijing: Science Press, 2010. (in Chinese)
[14]
Eom J, Schipper L, Thompson L. We keep on truckin: Trends in freight energy use and carbon emissions in 11 IEA countries[J]. Energy Policy, 2012, 45(45): 327-341.